
Generalized EXTRA stochastic gradient Langevin dynamics

Mert Gürbüzbalaban 1, Mohammad Rafiqul Islam 2, Xiaoyu Wang 3, Lingjiong Zhu 4

December 4, 2024

Abstract

Langevin algorithms are popular Markov Chain Monte Carlo methods for Bayesian learning,
particularly when the aim is to sample from the posterior distribution of a parametric model,
given the input data and the prior distribution over the model parameters. Their stochastic
versions such as stochastic gradient Langevin dynamics (SGLD) allow iterative learning based
on randomly sampled mini-batches of large datasets and are scalable to large datasets. However,
when data is decentralized across a network of agents subject to communication and privacy con-
straints, standard SGLD algorithms cannot be applied. Instead, we employ decentralized SGLD
(DE-SGLD) algorithms, where Bayesian learning is performed collaboratively by a network of
agents without sharing individual data. Nonetheless, existing DE-SGLD algorithms induce a
bias at every agent that can negatively impact performance; this bias persists even when using
full batches and is attributable to network effects. Motivated by the EXTRA algorithm and its
generalizations for decentralized optimization, we propose the generalized EXTRA stochastic
gradient Langevin dynamics, which eliminates this bias in the full-batch setting. Moreover, we
show that, in the mini-batch setting, our algorithm provides performance bounds that signifi-
cantly improve upon those of standard DE-SGLD algorithms in the literature. Our numerical
results also demonstrate the efficiency of the proposed approach.

1 Introduction

In our era of big data, the amount of data collected and stored has seen exponential growth with
ever-increasing rates. Given the rapid pace at which data are generated, often exceeding our
ability to analyze it—-particularly due to limitations in computational resources—-there is a grow-
ing interest in developing scalable machine learning algorithms that can efficiently handle large
datasets. Very often, because of communication constraints and privacy constraints, gathering
all these data for centralized processing is often impractical or infeasible. Decentralized machine
learning algorithms have received a lot of attention for such applications where agents can col-
laboratively learn a predictive model without sharing their own data but sharing only their local
models with their immediate neighbors at some frequency to generate a global model; see e.g.
[HBJ18, HBM19, ABC+20].

Although there is a large body of literature on scaleable first-order decentralized learning meth-
ods have been proposed in the literature such as decentralized stochastic approximation and op-
timization algorithms (see e.g. [ULGN17, GDG19, SBB+19, Ned20]), very few of them deal with
decentralized Bayesian learning (inference) [PBGG20, GGHZ21]. With this context, we now intro-
duce the problem of decentralized Bayesian inference. Assume there are N agents connected over

1Department of Management Science and Information Systems, Rutgers Business School, Piscataway, New Jersey,
United States of America; mg1366@rutgers.edu

2Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America; ris-
lam@fsu.edu

3FinTech Thrust, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, Peo-
ple’s Republic of China; xiaoyuwang@hkust-gz.edu.cn

4Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America;
zhu@math.fsu.edu

1

ar
X

iv
:2

41
2.

01
99

3v
1

 [
cs

.L
G

]
 2

 D
ec

 2
02

4

a network G = (V, E) with V = {1, 2, . . . , N} representing the agents and E ⊆ V × V being the set
of edges; i.e. i and j are connected if (i, j) ∈ E where the network is undirected, i.e. (i, j) ∈ E then
(j, i) ∈ E . Let Z = [z1, . . . , zn] be a dataset consisting of n independent and identically distributed
(i.i.d.) data vectors sampled from a parameterized distribution p(Z|x) where the parameter x ∈ Rd

has a common prior distribution p(x). Due to the decentralization in the data collection, each agent
i possesses a subset Zi of the data where Zi = {zi1, zi2, . . . , zini

} and ni is the number of samples
of the agent i. The data is held disjointly over agents; i.e. Z = ∪iZi with Zi ∩ Zj = ∅ for j ̸= i.
The goal is to sample from the posterior distribution p(x|Z) ∝ p(Z|x)p(x). Since the data points
are independent, the log-likelihood function will be additive; log p(Z|x) =

∑N
i=1

∑ni
j=1 log p(z

i
j |x).

Thus, if we set

f(x) :=

N∑
i=1

fi(x), fi(x) := −
ni∑
j=1

log p
(
zij |x

)
− 1

N
log p(x), (1.1)

the aim is to sample from the posterior distribution with density π(x) := p(x|Z) ∝ e−f(x), where
the functions fi(x) are called component functions with fi(x) being associated to the local data
of agent i that is only accessible by the agent i. Different choices of the log-likelihood function
and therefore the component functions result in different problems, including for example Bayesian
linear regression [Hof09], Bayesian logistic regression [Hof09], Bayesian principal component analysis
[DRW+16] and Bayesian deep learning [WY20, PS17].

Decentralized Langevin algorithms have been proposed in the recent literature that can be used
in the large-scale decentralized sampling problems [PBGG20, GGHZ21]. In this paper, we propose
and study a new class of Langevin algorithms for decentralized Bayesian inference. For these
algorithms, we provide a non-asymptotic convergence analysis alongside numerical experiments.
More specifically, our contributions are as follows:

First, inspired by the EXTRA algorithm and its extensions in the decentralized optimization
literature [SLWY15, Jak18], we propose a new algorithm, termed the generalized EXTRA stochastic
gradient Langevin dynamics, enabling collaborative Bayesian learning across a network of agents
without requiring them to share individual data. Our algorithm eliminates the network-induced
bias present in existing DE-SGLD algorithms that rely on full-batch processing [GGHZ21]. We
provide non-asymptotic performance guarantees for generalized EXTRA SGLD when each of the
components fi(x) is strongly convex and smooth in which case the target distribution has den-
sity π(x) ∝ e−f(x) where f is strongly convex and smooth. More specifically, we show that the

distribution of the iterates x
(k)
i converges to a neighborhood of the posterior distribution π(x) lin-

early (geometrically fast in k) in the 2-Wasserstein distance with a properly chosen stepsize and
communication matrices (Theorem 4). We can also show similar results for the averaged iterates

x(k) = 1
N

∑N
i=1 x

(k)
i . Our proof technique relies on analyzing generalized EXTRA SGLD as a per-

turbed version of the Euler-Maruyama discretization of an overdamped Langevin diffusion where
the perturbation effect is due to the stochastic nature of the gradients and the network effect where
agents are only able to communicate with their immediate neighbors. The proof technique relies on

developing novel bounds on the L2 distance between x
(k)
i and their average x(k), as well as the L2

distance between the average iterate x(k) and iterates based on the Euler-Maruyama discretization
of overdamped diffusion.

Second, we rigorously compare the iteration complexity of our generalized EXTRA SGLD algo-
rithm to the existing iteration complexity results for the DE-SGLD algorithm, and show improve-
ment by a factor of at least L, where L is the smoothness coefficient of fi’s (Proposition 5).

2

Finally, we provide numerical experiments that illustrate our theory and showcase the practical
performance of the EXTRA SGLD algorithm: We show on Bayesian linear regression with synthetic
data and Bayesian logistic regression tasks with both synthetic and real data that our method allows
each agent to sample from the posterior distribution efficiently without communicating local data.
We compare the numerical results of the EXTRA SGLD with DE-SGLD in the literature and show
superior performance.

2 Preliminaries and Background

Langevin algorithms. One of the most widely used Markov Chain Monte Carlo methods in
statistics are Langevin algorithms, that allow one to sample from a given density π(x) of interest.
The classical one is based on the overdamped Langevin SDE ; see e.g. [Dal17, DM19, DM17, DK19]:

dX(t) = −∇f(X(t))dt+
√
2dWt, (2.1)

where f : Rd → R and Wt is a standard d-dimensional Brownian motion that starts at zero at
time zero. Under some mild assumptions on f , the diffusion (2.1) admits a unique stationary
distribution with the density π(x) ∝ e−f(x), also known as the Gibbs distribution [Pav14]. For
computational purposes, this diffusion is simulated by considering its discretization. Although
various discretization schemes are proposed, Euler-Maruyama discretization is the simplest one
and is known as the unadjusted Langevin algorithm in the literature [DM17, DM19]:

xk+1 = xk − η∇f(xk) +
√

2ηwk+1 , (2.2)

where η > 0 is the stepsize parameter, and wk ∈ Rd is a sequence of i.i.d. standard Gaussian
random vectors N (0, Id). But then the discretized chain (2.2) does not converge to the target π
and has a bias that needs to be properly characterized to provide performance guarantees [DK19].
The unadjusted Langevin algorithm (2.2) assumes availability of the gradient ∇f . On the other
hand, in many settings in machine learning, computing the full gradient ∇f is either infeasible or
impractical. For example, in Bayesian regression or classification problems, f can have a finite-
sum form as the sum of many component functions over all the data points and the number of
data points can be large (see, e.g., [GGHZ21, XCZG18]). In such settings, algorithms that rely on
stochastic gradients, i.e., unbiased stochastic estimates of the gradient obtained by a randomized
sampling of the data points, is often more efficient [Bot10]. This fact motivated the development
of Langevin algorithms that can support stochastic gradients. In particular, if one replaces the full
gradient ∇f in (2.2) by a stochastic gradient, the resulting algorithm is known as the stochastic
gradient Langevin dynamics (SGLD) (see, e.g., [WT11]). There has been growing recent interest
in the non-asymptotic analysis of Langevin algorithms, motivated by applications to large-scale
data analysis and Bayesian inference. The Langevin algorithms admit convergence guarantees
to a stationary distribution in a variety of metrics and under various assumptions on f ; see e.g.
[Dal17, DM17, DM19, CB18, EHZ22, DK19, BCM+21, RRT17, XCZG18, CMR+21, ZADS23].

Decentralized setting. We consider decentralized algorithm where the agent is connected over
a connected network by N nodes, and W = [Wij] ∈ RN×N is a symmetric, doubly stochastic
matrix such that, for i ̸= j, Wij = Wji > 0 if {i, j} ∈ E , and Wij = Wji = 0 if {i, j} /∈ E , and
Wii = 1 −

∑
j ̸=iWij > 0. Moreover, we have σmax(W − 1

n1N1TN) < 1, where σmax denotes the

3

largest singular value and 1N ∈ RN is a column vector of ones. We aim to sample from a target
distribution with density π(x) ∝ e−f(x) on Rd with f(x) :=

∑N
i=1 fi(x).

In decentralized optimization, decentralized gradient descent (DGD) [NO09] carries the follow-
ing iterative algorithm

x(k+1) = Wx(k) − η∇F
(
x(k)

)
, W = W ⊗ Id, (2.3)

where x(k) =

[(
x
(k)
1

)T
, . . . ,

(
x
(k)
N

)T]T
∈ RNd with W = W ⊗ Id as the Kronecker product of

matrices W and Id where Id is a d× d identity matrix and F (x) : RNd → R is defined as:

F (x) = F (x1, . . . , xN) :=

N∑
i=1

fi(xi), for any x = (x1, . . . , xN) ∈ RNd. (2.4)

Let x∗ :=
[
xT∗ , . . . , x

T
∗
]T ∈ RNd, where x∗ is the minimizer of f(x). It satisfies the conditions (1)

x∗ = Wx∗, (2) 1
T
Nd∇F (x∗) =

∑N
i=1∇fi (x∗) = 0; these are referred to as consensus and optimality

conditions respectively.

Inexactness and exact algorithms. If we take the limit over k in DGD iterations (2.3), we get

x∞ = Wx∞ − η∇F (x∞), (2.5)

if x∞ = x∗, then we must have Wx∞ = x∞ by consensus, then we can get

x∞ = x∞ − η∇F (x∞), (2.6)

which means ∇F (x∞) = 0, i.e. ∇fi (x
∞
i) = 0 for every i, that implies for any agent i, x∞i

simultaneously minimizes the objective function fi, which is impossible in general. Hence, x∞ ̸=
x∗ in general and DGD is inexact. Although it is inexact, it is shown ∥x∞ − x∗∥ ≤ O(η

√
N),

see [GGHZ21], [YLY16], [AFGO19] and [FGO+22]. A decentralized exact first-order algorithm
(EXTRA) proposed by [SLWY15] can solve the consensus optimization problem and converges to
the exact solution. [Jak18] unified and generalized this exact distributed first-order algorithm.

Decentralized Langevin algorithms. The decentralized stochastic gradient Langevin dynamics
(DE-SGLD) algorithm [SSP20, GGHZ21] consists of a weighted averaging with the local variables

x
(k)
j of node i’s immediate neighbors j ∈ Ωi := {j : (i, j) ∈ E}, where x(k)i denotes the local variable

of node i at iteration k, as well as a stochastic gradient step over the node’s component function
fi(x), i.e.

x
(k+1)
i =

∑
j∈Ωi

Wijx
(k)
j − η∇̃fi

(
x
(k)
i

)
+
√

2ηw
(k+1)
i , (2.7)

where η > 0 is the stepsize, Wij are the entries of a doubly stochastic weight matrix W with Wij > 0

only if i is connected to j, w
(k)
i are independent and identically distributed (i.i.d.) Gaussian random

variables with zero mean and identity covariance matrix for every i and k, and ∇̃fi

(
x
(k)
i

)
is an

unbiased stochastic estimate of the deterministic gradient ∇fi

(
x
(k)
i

)
with a bounded variance.

4

When the number of data points ni is large, stochastic estimates ∇̃fi(x) are cheaper to compute
compared to actual gradients ∇fi(x) and can for instance be estimated from a mini-batch of data,
i.e. from randomly selected smaller subsets of data. This allows the DE-SGLD method to be
scaleable to big data settings when ni can be large. Without Gaussian noise, iterations are also
equivalent to the decentralized stochastic gradient algorithm [SKP+20, FGO+22] which has its
origins in the decentralized gradient descent (DGD) methods introduced in [NO09].

Strong convexity and smoothness. Let Sµ,L(Rd) denote the set of functions from Rd to R
that are µ-strongly convex and L-smooth, that is, for any g ∈ Sµ,L(Rd), it holds that

L

2
∥x− y∥2 ≥ g(x)− g(y)−∇g(y)T (x− y) ≥ µ

2
∥x− y∥2 , for every x, y ∈ Rd. (2.8)

Notations. Define P2(Rd) as the space consisting of all the Borel probability measures µ on
Rd with the finite second moment (based on the Euclidean norm). For any µ1, µ2 ∈ P2(Rd),
the 2-Wasserstein distance W2 (see e.g. [Vil09]) between µ1 and µ2 is defined as: W2(µ1, µ2) :=(
inf E

[
∥Y1 − Y2∥2

])1/2
, where the infimum is taken over all joint distributions of the random vari-

ables Y1, Y2 with marginal distributions µ1, µ2 respectively. For any x, y ∈ R, denote x ∨ y :=
max{x, y} and x ∧ y := min{x, y}. For any random variable X, denote L(X) the law of X.

3 EXTRA Langevin Algorithms

We aim to sample from a target distribution with density π(x) ∝ e−f(x) on Rd with f(x) :=∑N
i=1 fi(x). Now we make the first assumption on the objective function.

Assumption 1. We assume the component functions fi are µ-strongly convex and L-smooth with
L > µ, i.e. fi ∈ Sµ,L(Rd) for every i = 1, 2, . . . , N .

Under Assumption 1, it follows that F is also µ-strongly convex and L-smooth where we recall
from the definition in (2.4) such that F : RNd → R with F (x1, x2, . . . , xN) =

∑N
i=1 fi(xi) for any

x = (x1, . . . , xN) ∈ RNd.
We propose EXTRA stochastic gradient Langevin dynamics (EXTRA SGLD) to target π that

is defined as follows

x
(k+2)
i =

∑
j∈Ωi

Wijx
(k+1)
j − η∇̃fi

(
x
(k+1)
i

)
+
√

2ηw
(k+2)
i , (3.1)

x
(k+1)
i =

∑
j∈Ωi

W̃ijx
(k)
j − η∇̃fi

(
x
(k)
i

)
+
√

2ηw
(k+1)
i , (3.2)

where w
(k)
i are standard d-dimensional Gaussian random vectors that are i.i.d. in both i =

1, 2, . . . , N and k = 1, 2, 3, In this algorithm, x
(k)
i denotes the local variable of node i at itera-

tion k for every node i = 1, 2, . . . , N and iteration k = 0, 1, 2, At the iteration k, node i accesses

∇̃fi

(
x
(k)
i , z

(k)
i

)
where z

(k)
i is a random variable independent of

{
z
(t)
j

}
j=1,2,...,i−1,i+1,...,N ; t=1,...,k−1

.

We let ∇̃fi

(
x
(k)
i

)
denote ∇̃fi

(
x
(k)
i , z

(k)
i

)
and define the gradient noise as

ξ
(k)
i := ∇̃fi

(
x
(k)
i

)
−∇fi

(
x
(k)
i

)
, i = 1, 2, . . . , N, (3.3)

5

and we assume the stochastic gradient noise satisfies the following assumption.

Assumption 2. For every i = 1, 2, . . . , N and k = 0, 1, 2, . . ., the gradient noise defined in (3.3)
is conditionally unbiased with a finite second moment such that

E
[
ξ
(k+1)
i

∣∣∣∣Fk

]
= 0, E

∥∥∥ξ(k+1)
i

∥∥∥2 ≤ σ2, (3.4)

where Fk is the natural filtration of the iterates
(
x
(k)
i

)N
i=1

,
(
z
(k)
i

)N
i=1

up to (and including) time k.

Then, we re-formulate EXTRA stochastic gradient Langevin dynamics as follows.

x
(k+2)
i =

∑
j∈Ωi

Wijx
(k+1)
j − η∇fi

(
x
(k+1)
i

)
− ηξ

(k+1)
i +

√
2ηw

(k+2)
i , (3.5)

x
(k+1)
i =

∑
j∈Ωi

W̃ijx
(k)
j − η∇fi

(
x
(k)
i

)
− ηξ

(k)
i +

√
2ηw

(k+1)
i . (3.6)

These updates for N agents can also be expressed as

x(k+2) = Wx(k+1) − η∇F
(
x(k+1)

)
− ηξ(k+1) +

√
2ηw(k+2), (3.7)

x(k+1) = W̃x(k) − η∇F
(
x(k)

)
− ηξ(k) +

√
2ηw(k+1), (3.8)

where W = W ⊗ Id, W̃ = W̃ ⊗ Id, x
(k) =

[(
x
(k)
1

)T
, . . . ,

(
x
(k)
N

)T]T
∈ RNd and

w(k) =

[(
w

(k)
1

)T
, . . . ,

(
w

(k)
N

)T]T
, k = 0, 1, 2, . . . ,

and we assume that the mixing matrices W, W̃ satisfy the following assumption. Such assumptions
are made for analyzing the EXTRA methods and its generalizations [SLWY15, Jak18].

Assumption 3. Consider a connected network G = (V, E) consisting of a set of agents V =
{1, 2, · · · , n} and a set of undirected edges E. The doubly stochastic matrices W = [Wij] ∈ RN×N

and W̃ =
[
W̃ij

]
∈ RN×N satisfy

(1) Null space property:

null
{
W − W̃

}
= span{1N}, null

{
IN − W̃

}
⊇ span{1N},

where span{1N} is the span of the vector space supported by all-one vector
[
1TN , 1TN , . . . , 1TN

]
.

(2) Spectral property:

W̃ ≻ 0,
IN +W

2
≽ W̃ ≽ W.

The assumption implies W ≻ −IN and IN+W
2 ≽ W , so the eigenvalues of W lie in (−1, 1] and

the eigenvalues of W̃ lie in (0, 1]. We will only consider W̃ ̸= W ; if W̃ = W , then the EXTRA
SGLD iterate in (3.11) reduces to DE-SGLD algorithm studied by [GGHZ21]. We assume that

W̃ = hIN + (1− h)W, h ∈ (0, 1/2]. (3.9)

6

Note that the definition of W̃ satisfies Assumption 3, where we can compute that h(IN −W) ≽ 0,
which implies hIN + (1− h)W ≽ W , and it is clear that IN+W

2 ≽ hIN + (1− h)W with h ≤ 1/2.
In the noiseless case, EXTRA has a primal-dual interpretation as a gradient descent ascent on

a particular energy function [Jak18]. EXTRA was proposed by [SLWY15], and its unification and
generalization was studied by [Jak18] to solve the dual optimization problem, where the author
showed the iterates converges to the exact optimal solution if the parameters are chosen appro-
priately. Motivated by this work for decentralized optimization, we aim to propose a generalized
EXTRA stochastic gradient Langevin dynamics which can produce the exact target distribution.
We can use some algebraic transformation to generalize EXTRA SGLD algorithm in (3.7)-(3.8).
By subtracting (3.8) from (3.7), the updating iterates follow

x(k+2) − x(k+1) = Wx(k+1) − W̃x(k) − η
(
∇F

(
x(k+1)

)
−∇F

(
x(k)

))
− η

(
ξ(k+1) − ξ(k)

)
+
√

2η
(
w(k+2) − w(k+1)

)
, (3.10)

where ξ(k) =

[(
ξ
(k)
1

)T
,
(
ξ
(k)
2

)T
, . . . ,

(
ξ
(k)
N

)T]T
for every k. Next, we sum up the subtraction terms(

x(2) − x(1)
)
,
(
x(3) − x(2)

)
, . . . ,

(
x(k+2) − x(k+1)

)
in (3.10), and by telescopic cancellation, we obtain

x(k+2) = Wx(k+1) − η∇F
(
x(k+1)

)
− ηξ(k+1) +

k∑
h=0

(
W − W̃

)
x(h) +

√
2ηw(k+1), (3.11)

and equivalently,

x(k+2) = W̃x(k+1) − η∇F
(
x(k+1)

)
− ηξ(k+1) −

k+1∑
h=0

(
W̃ −W

)
x(h) +

√
2ηw(k+1), (3.12)

provided x(1) = Wx(0) − η∇f
(
x(0)

)
− ηξ(0) +

√
2ηw(1). Since U = W̃ −W is positive semi-definite,

we are able to have the following matrix decomposition U1/2 = PD1/2P T , where D is diagonal with
non-negative diagonal entries and P is an orthogonal matrix. Thus, we can introduce an auxiliary
sequence as follows:

q(k) = U1/2

(k)∑
h=0

x(h), U = U ⊗ Id, U = W̃ −W ∈ RN×N . (3.13)

Moreover, it is easy to observe that

q(k+1) = q(k) + U1/2x(k+1). (3.14)

Thus, we obtain the following 2(Nd)-dimensional recursive expression:

x(k+1) = x(k) − η

(
1

η

(
INd − W̃

)
x(k) +∇F

(
x(k)

)
+ ξ(k) +

1

η
U1/2q(k)

)
+
√
2ηw(k+1), (3.15)

q(k+1) = q(k) + U1/2x(k+1), U = W̃ −W. (3.16)

By denoting

v(k) =
1

η
U1/2q(k), k = 0, 1, 2, . . . , (3.17)

7

we get from (3.15) that

v(k) +∇F
(
x(k)

)
+ ξ(k) − 1

η
W̃x(k) −

√
2

η
w(k+1) = −1

η
x(k+1). (3.18)

Moreover, we can compute from (3.16) and (3.17) that

v(k+1) − v(k) =
1

η
U1/2q(k+1) − 1

η
U1/2q(k) =

1

η
U1/2

(
q(k) + U1/2x(k+1)

)
− 1

η
U1/2q(k) =

1

η
Ux(k+1).

(3.19)

Hence, we can re-write (3.16) as the following update:

v(k+1) = v(k) +
1

η
Ux(k+1),= v(k) − U

(
v(k) +∇F

(
x(k)

)
+ ξ(k) − 1

η
W̃x(k) −

√
2

η
w(k+1)

)
. (3.20)

We introduce the generalized EXTRA stochastic gradient Langevin dynamics as follows

x(k+1) = W̃x(k) − η
(
∇F

(
x(k)

)
+ v(k)

)
− ηξ(k) +

√
2ηw(k+1), (3.21)

v(k+1) = v(k) − U
(
v(k) +∇F

(
x(k)

)
− Bx(k)

)
− Uξ(k) + U

√
2

η
w(k+1), U = W̃ −W. (3.22)

We can observe from the iterates (3.21)-(3.22) that if we choose U = 0N ⊗ Id, then it reduces
iterative updates to the DE-SGLD algorithm in [GGHZ21]. We will study the algorithm with the

matrix W̃ = W̃ ⊗ Id defined in (3.9), and the matrix B = B ⊗ Id has the property

1TNB = c with c ∈ R. (3.23)

The corresponding deterministic optimization algorithm without gradient noise was studied in [SLWY15]

and [Jak18]5 with W̃ = IN+W
2 , which corresponds to our choice on W̃ when h = 1/2. [GGHZ21]

studied decentralized SGLD, it corresponds to let h = 0 in our algorithm, that is U = 0N . We also
note that by taking B = W̃/η, the algorithm (3.21)-(3.22) reduces to EXTRA SGLD algorithm
in (3.1)-(3.2). In particular, [Jak18] considered the case B = bINd with b > 0.

4 Convergence Analysis

In this section, we provide the main results of the paper. Our non-asymptotic convergence analysis
provides the convergence guarantees for the 2-Wasserstein distance between the law of the average
of the iterates x(K) and the target distribution π, as well as the average of the 2-Wasserstein distance

between the law of the individual iterates x
(K)
i and the target distribution π.

5We note [Jak18] exchanged the notations W̃ and W to get their Equations (16)-(17) and Lemma 3. In their

notation, they have L := INd −W = W − W̃ by using W = IN+W̃
2

in their algorithm, it corresponds to U = W̃ −W
in ours. In their algorithm, they only have the notation W, so they further denote W̃ = W −J in their proofs which
is different from our choice on W̃ in (3.9).

8

Theorem 4. Consider the generalized EXTRA Langevin dynamics with the network averaging
matrix W̃ = hIN + (1− h)W where

0 < h ≤ 1− γ
W

4γ2IN−W

∧ 1

2
∧ 1

γ1γ2
, (4.1)

and assume that the stepsize η is chosen satisfying

0 < η <
1

hγ1γ2
∧ γW̃

6(L+ µ) ∨ 2A
∧ 1 ∧ 1

L+ µ
∧ γW̃

6(L+ µ)
, (4.2)

where γ1, γ2, γW̃ , γ
2
IN−W are constants defined in Table 1. Then, for any K ≥ K0, the following bound

holds:

W2

(
L
(
x(K)

)
, π
)
≤

γ2K
W̃

−
(
1− ηµ

(
1− ηL

2

))K
γ2

W̃
− 1 + ηµ

(
1− ηL

2

)


1/2

2Lγ
W̃√

N

(
E
∥∥∥x(0)∥∥∥2)1/2

+ (1− µη)KW2 (L (x0) , π) +
√
ηE1, (4.3)

where we have

E1 :=

 η

µ
(
1− ηL

2

) +
(1 + ηL)2

µ2
(
1− ηL

2

)2


1/2

·
(
4L2 (Rh +R′

h) η

N(1− γ
W̃
)2

+
4L2σ2η

1− γ2
W̃

+
8L2d

1− γ2
W̃

)1/2

+
σ√

µ
(
1− ηL

2

)
N

+
1.65L

µ

√
dN−1. (4.4)

Moreover,

1

N

N∑
i=1

W2

(
L
(
x
(K)
i

)
, π
)

≤ η · D1√
N

+
√
η · (D2 + E1) +

γ2K
W̃

−
(
1− ηµ

(
1− ηL

2

))K
γ2

W̃
− 1 + ηµ

(
1− ηL

2

)


1/2

2Lγ
W̃√

N

(
E
∥∥∥x(0)∥∥∥2)1/2

+ (1− µη)KW2 (L (x0) , π) +
2 (γ

W̃
)K√

N

√
E
[∥∥x(0)∥∥2], (4.5)

where the constants Rh and R′
h are made explicit and given in Table 1.

5 Comparison with DE-SGLD

In this section, we are interested in comparing our generalized EXTRA SGLD method with the
DE-SGLD method in the literature [GGHZ21]. In particular, we highlight the dependence on
strong-convexity constant µ, the smoothness constant L, the dimension d and the accuracy level ε.
We have the following proposition.

9

Proposition 5. For DE-SGLD, under the assumptions in Theorem 1 in [GGHZ21], as ε → 0,

1

N

N∑
i=1

Wde−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O(ε), (5.1)

provided that

K ≥ Kde−sgld = Õ
(
L4d

ε2µ3

)
(5.2)

where Õ hides the logarithmic dependence on ε.
For generalized EXTRA SGLD, under the assumptions in Theorem 4, as ε → 0, by taking

h ≥ Ω(ηµ) and h < 1
(L/µ)4(L+∥B∥2) ∧

1
2γ1γ2

, it holds that

1

N

N∑
i=1

Wextra−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O(ε), (5.3)

provided that

K ≥ Kextra−sgld = Õ
(
L2d

ε2µ3

)
, (5.4)

where Õ hides the logarithmic dependence on ε and the constants γ1, γ2 are provided in Table 1.

By comparing the complexities of DE-SGLD in (5.2) to generalized EXTRA SGLD in (5.4), we
find that generalized EXTRA SGLD achieves an improvement on the order of Õ(L2). When µ is
large (and therefore L is large), the Gibbs distribution π ∝ e−f becomes concentrated around the
minimizer of f , making the sampling problem approximately equivalent to the global optimization
problem minx∈Rd f(x). In the decentralized optimization setting, EXTRA is known to improve upon
decentralized gradient descent, and the improvement achieved with generalized EXTRA SGLD in
the sampling setting is analogous. Intuitively, DE-SGLD introduces a bias, which is evident in
the constant D in (6.100) that results from the agents’ gradient updates. The generalized EXTRA
SGLD algorithm corrects this bias in the agents’ gradient updates, leading to improved performance.

6 Proof of the Main Results

In this section, we provide the proofs of Theorem 4 and Proposition 5.

6.1 Proof of Theorem 4

In this section, we provide the proof of Theorem 4 via establishing a sequence of key technical
results whose proofs will be provided in Appendix A. In order to derive Theorem 4, based on the
triangle inequality, we consider the following decomposition:

1

N

N∑
i=1

W2

(
L
(
x
(k)
i

)
, π
)
≤ 1

N

N∑
i=1

W2

(
L
(
x
(k)
i

)
, L
(
x(k)

))
+W2

(
L
(
x(k)

)
, π
)
, (6.1)

10

Constants Source

γW̃ = |λW̃

2 |210<|λW̃
2 |2< 1

2
+

|λW̃

2 |2(|λW̃

2 |2 − 1
2)

1− |λW̃

2 |2
1 1

2
≤|λW̃

2 |2≤ 2
3
+

5|λW̃

2 |2 − 3|λW̃

2 |4 − 2

3|λW̃

2 |2 − 1
1 2

3
≤|λW̃

2 |2<1 (6.20)

A =

(
L

µ
− 1 +

γW̃

2(1 + µ/L)

)
· 4L

2

N2

(
1 +

2 + 2L

µ

)
(6.23)

γIN−W = max
{
1−

∣∣λW
2

∣∣ , 1− ∣∣λW
N

∣∣} , γ
W
:= max

{∣∣λW
2

∣∣ , ∣∣λW
N

∣∣} (6.25)

γ1 =
1

γW̃

(
1

L
+ 2 +

1

Lµ

)
, γ2 =

12
(
L2 + L ∥B∥2

)
(1− γ

W
)
(
1− γ2IN−W

)
1 +

4L2
(
1 + 2+2L

µ

)
N2µ

 (6.30)

w1 = 2

(
N2 + 1

γW̃

+
4

γW̃

·
(
L

µ
+ 3ηL− 1

))
, w2 =

8
(
6
(
L2 + L ∥B∥2

)
+N2µ

)
Nµ(1− γ

W
)
(
1− γ2IN−W

) (6.31), (6.32)

E1 =
8

γW̃

(L/µ+ 3ηL− 1) , E2 =
2

γW̃

(6.33)

E3 =
12
(
L2 + L ∥B∥2

)
µ(1− γ

W
)
(
1− γ2IN−W

) , E4 =
4

(1− γ
W
)
(
1− γ2IN−W

) (6.34)

Rh = hδ2
(
C1γ2
2L2

+
C0γ1γ2
2L2

)
+ (h/η)δ2

(
γ2D0 +

w2

N

(
ησ2 + 2d

))
+ ∥∇F (x∗)∥2 (6.51)

R′
h = ηδ2 (C1 + C3 + γ1C0 +D0C2) + δ2η2

(
C1C2

2L2
+

γ1C0C2

2L2

)
+ 3 ∥∇F (x∗)∥2 (6.52)

K0 =
δ2

1− δ2

[(
1− ∥∇F (x∗)∥2

D0 + C4

)
∨

(
1− ∥∇F (x∗)∥2

C0

)]
∨ 0 (6.53)

C0 =

(
(h/η)E3E

[∥∥∥e(0)x

∥∥∥2]+ E4E
[∥∥∥ṽ(0)∥∥∥2]) · 2L2

1− ηγ1γ2
(6.45)

C1 =
2L2

(
ησ2 + 2d

)
N

· w2γ1(h/η) + w1

1− hγ1γ2
, C2 =

2L4

(
η + 1+ηL

µ(1− ηL
2)

)
N2
(
δ2 + ηµ

(
1− ηL

2

)
− 1
) (6.46), (6.47)

C3 =
2L2

N
· ησ2 + 2d

δ2 + ηµ
(
1− ηL

2

)
− 1

, C4 =
2L2

δ2 + ηµ
(
1− ηL

2

)
− 1

E
[∥∥∥e(0)x

∥∥∥2] (6.48), (6.49)

D0 =
1

1− hγ1γ2

(
E1E

[∥∥∥x̃(0)∥∥∥2]+ E2E
[∥∥∥e(0)x

∥∥∥2]) (6.42)

D1 = 2

√
2(Rh +R′

h)

1− γ
W̃

+
2σ√
1− γ2

W̃

, D2 = 2

√
2d

1− γ2
W̃

(6.42), (6.58)

δ2 ∈
[(

1− ηµ

2

(
1− ηL

2

))
∨
(
1− h

1− γ
W

4

(
1− γIN−W

))
, 1

)
(6.39)

Table 1: Summary of the constants and where they are defined in the text.

11

where

W2

(
L
(
x(k)

)
, π
)
≤ W2

(
L
(
x(k)

)
,L(xk)

)
+W2 (L(xk), π) , (6.2)

x(k) := 1
N

∑N
i=1 xi(k) is the average iterates and xk has the iterates

xk+1 = xk −
η

N
∇f (xk) +

√
2ηw(k+1). (6.3)

These iterates correspond to the Euler-Maruyama discretization of overdamped Langevin diffusion

dXt = − 1

N
∇f(Xt)dt+

√
2N−1dWt, (6.4)

where Wt is a standard d-dimensional Brownian motion, w(k) := 1
N

∑N
i=1w

(k)
i , and w

(k)
i are N (0, Id)

distributed that are i.i.d. in both k ∈ N and i = 1, 2, . . . , N .
The main idea of our proof technique is to bound the following three terms: (1) the L2 distance

between x
(k)
i and their average x̄(k); (2) the L2 distance between the average iterate x̄(k) and iterates

xk in (6.3) obtained from Euler-Maruyama discretization of overdamped SDE (6.4); and (3) the
W2 distance between the law of xk in (6.3) and the Gibbs distribution π. First, we upper bound

the L2 distance between x
(k)
i and their average.

6.1.1 Uniform L2 bounds between x
(k)
i and their average x̄(k)

Denoting by a =
{
a(0), a(1), . . . , a(k), . . .

}
an infinite sequence of vectors, where a(k) ∈ Rp, k =

0, 1, . . . for some p ∈ N. For a fixed δ ∈ (0, 1), we define the following quantity

∥a∥δ,K2 := max
k=0,1,...,K

E

[∥∥∥∥ 1

δk
a(k)

∥∥∥∥2
]
. (6.5)

We first state a preliminary lemma that will be frequently used in the following analysis, and this
lemma is a modification of Lemma 6 in [Jak18], and its proof will be provided in Appendix B.

Lemma 6. Consider two infinite random sequences a =
{
a(0), a(1), . . . , a(k), . . .

}
and

b =
{
b(0), b(1), . . . , b(k), . . .

}
, with a(k), b(k) ∈ Rp for some p ∈ N such that E

∥∥a(k)∥∥2 < ∞ and

E
∥∥b(k)∥∥2 < ∞ for every k ≥ 0. Suppose that, for all k = 0, 1, . . ., there holds:

E
∥∥∥a(k+1)

∥∥∥2 ≤ c1E
∥∥∥a(k)∥∥∥2 + c2E

∥∥∥b(k)∥∥∥2 + c0. (6.6)

where ci ≥ 0, i = 0, 1, 2. Then, for all K = 0, 1, . . ., for any δ ∈ (0, 1), we have:

∥a∥δ,K2 ≤ c1
δ2

∥a∥δ,K2 +
c2
δ2

∥b∥δ,K2 +
c0
δ2K

+ E
∥∥∥a(0)∥∥∥2 . (6.7)

Next, we introduce the following technical lemma, which is an extension of Lemma 6 and this
extension will be used in the proof of Lemma 10.

12

Lemma 7. Given any n ∈ N with n ≥ 2, if

E
∥∥∥a(k+1)

∥∥∥2 ≤ c1E
∥∥∥a(k)∥∥∥2 + n∑

i=2

ciE
∥∥∥b(k)i

∥∥∥2 + c0, (6.8)

for every k = 0, 1, . . . ,K, then

∥a∥δ,K2 ≤ c1
δ2

∥a∥δ,K2 +
n∑

i=2

ci
δ2

∥bi∥δ,K2 +
c0
δ2K

+ E
∥∥∥a(0)∥∥∥2 . (6.9)

Next, we define the error vectors:

e(k)x := x(k) − x∗ , e(k)v := v(k) +∇F (x∗) , e(k) :=

((
e(k)x

)T
,
(
e(k)v

)T)T

, (6.10)

where x∗ =
[
(x∗)

T , . . . , (x∗)
T
]T

∈ RNd is the vector of minimizer of the objective from the target

Gibbs distribution. For any k = 0, 1, 2, . . ., let us further define

x(k) :=

((
x(k)

)T
,
(
x(k)

)T
, . . . ,

(
x(k)

)T)T

∈ RNd, (6.11)

v(k) :=

((
v(k)

)T
,
(
v(k)

)T
, . . . ,

(
v(k)

)T)T

∈ RNd, (6.12)

where x(k) := 1
N

∑N
i=1 x

(k)
i and v(k) := 1

N

∑N
i=1 v

(k)
i . By introducing the following quantities:

x̃(k) := x(k) − x(k), ṽ(k) := v(k) − v(k), (6.13)

we define the average errors as follows.

e(k)x :=
1

N

N∑
i=1

(
x
(k)
i − x∗

)
, e(k)v :=

1

N

N∑
i=1

(
v
(k)
i +∇fi (x∗)

)
. (6.14)

Now we can decompose the error terms e
(k)
x and e

(k)
v in (6.10) and get the following lemma.

Lemma 8. For all k = 0, 1, 2, . . ., the error terms e
(k)
x and e

(k)
v have the decomposition:

e(k)x = x̃(k) + 1N ⊗ e(k)x , e(k)v = ṽ(k) + 1N ⊗ e(k)v , (6.15)

with
ṽ(k) = e(k)v , e(k)v = v(k) = 0. (6.16)

Next, to facilitate the presentations, let us define two sequences x̃ :=
{
x̃(0), x̃(1), . . . , x̃(k), . . .

}
and ṽ :=

{
ṽ(0), ṽ(1), . . . , ṽ(k), . . .

}
where x̃(k), ṽ(k) ∈ RNd are given in (6.13). By following the

notation in (6.5), we denote

∥x̃∥δ,K2 := max
k=0,1,...,K

E

[∥∥∥∥ 1

δk
x̃(k)

∥∥∥∥2
]
, ∥ṽ∥δ,K2 = max

k=0,1,...,K
E

[∥∥∥∥ 1

δk
ṽ(k)

∥∥∥∥2
]
. (6.17)

13

Similarly, we also define the sequence ex =
{
e
(0)
x , e

(1)
x , . . . , e

(k)
x , . . .

}
where e

(k)
x ∈ Rd is defined

in (6.14) and moreover, we denote

∥ex∥δ,K2 := max
k=0,1,...,K

E

[∥∥∥∥ 1

δk
e(k)x

∥∥∥∥2
]
. (6.18)

Now we present a sequence of technical lemmas. First, we provide an upper bound on ∥ex∥δ,K2
by using ∥x̃∥δ,K2 .

Lemma 9. Suppose Assumptions 1, 2, and 3 hold. Taking the stepsize 0 < η < 2
L ∧ 1, then for

any δ2 ∈
(
1− ηµ

(
1− ηL

2

)
, 1
)
, the following inequality holds for every K ≥ 0:

∥ex∥δ,K2 ≤ η · L2

N2
(
δ2 + ηµ

(
1− ηL

2

)
− 1
)
η +

1 + ηL

µ
(
1− ηL

2

)
 ∥x̃∥δ,K2

+
η

Nδ2K−2
· ησ2 + 2d

δ2 + ηµ
(
1− ηL

2

)
− 1

+
δ2

δ2 + ηµ
(
1− ηL

2

)
− 1

E
[∥∥∥e(0)x

∥∥∥2] . (6.19)

Next, we provide an upper bound on ∥x̃∥δ,K2 in terms of ∥ex∥δ,K2 and ∥ṽ∥δ,K2 .

Lemma 10. Under the assumptions in Lemma 9, in addition, let the stepsize η ≤ 1
L . Denoting

the eigenvalues of matrix W̃ such that 1 = λW̃

1 > λW̃

2 ≥ · · · ≥ λW̃

N > 0. Define the positive constant

γW̃ :=



∣∣λW̃

2

∣∣2 if 0 <
∣∣λW̃

2

∣∣2 < 1
2 ,

|λW̃
2 |

2
(
|λW̃

2 |
2− 1

2

)
1−|λW̃

2 |
2 if 1

2 ≤
∣∣λW̃

2

∣∣2 ≤ 2
3 ,

5|λW̃
2 |

2−3|λW̃
2 |

4−2

3|λW̃
2 |

2−1
if 2

3 ≤
∣∣λW̃

2

∣∣2 < 1.

(6.20)

By taking

0 < η ≤ γW̃

6(L+ µ)
, (6.21)

it holds that:

∥x̃∥δ,K2 ≤ ηµ

γW̃

(L/µ+ 3ηL− 1) ∥ex∥δ,K2 +
η

γW̃

(
1

2L
+ η +

η

2Lµ

)
∥ṽ∥δ,K2

+
η

γW̃δ2K−2

(
N +

1

N

)
(ησ2 + 2d) +

δ2

γW̃

E
[∥∥∥x̃(0)∥∥∥2] , (6.22)

where the constant δ2 depends on
∣∣λW̃

2

∣∣2 in three regimes:

(1). If
∣∣λW̃

2

∣∣2 < 1
2 , then (6.22) holds for all δ such that 1 > δ2 ≥ 2

∣∣λW̃

2

∣∣2;
(2). If 2

3 ≥
∣∣λW̃

2

∣∣2 ≥ 1
2 , then (6.22) holds for all δ such that 1 > δ2 ≥ |λW̃

2 |
2

2
(
1−|λW̃

2 |
2
) ≥ 1

2 ;

(3). If 1 >
∣∣λW̃

2

∣∣2 > 2
3 , then (6.22) holds for all δ such that 1 > δ2 ≥ 4|λW̃

2 |
2−2

3|λW̃
2 |

2−1
> 1

2 .

14

As a direct result from Lemmas 9 and 10, we obtain the following lemma that provides an upper
bound on ∥x̃∥δ,K2 in terms of ∥ṽ∥δ,K2 .

Lemma 11. Denote

A :=

(
L

µ
− 1 +

γW̃

2(1 + µ/L)

)
· 4L

2

N2

(
1 +

2 + 2L

µ

)
. (6.23)

Given any δ2 ∈
[
1− ηµ

2

(
1− ηL

2

)
, 1
)
under the conditions for δ in Lemma 10, and suppose η ≤

γW̃

6(L+µ) ∧
γW̃

2A , there holds,

∥x̃∥δ,K2 ≤ η · 2

γW̃

(
1

2L
+ η +

η

2Lµ

)
∥ṽ∥δ,K2

+ η · 2

δ2K−2
(ησ2 + 2d)

(
N + 1

N

γW̃

+
4

NγW̃

· (L/µ+ 3ηL− 1)

)

+
8δ2

γW̃

(L/µ+ 3ηL− 1)E
[∥∥∥e(0)x

∥∥∥2]+ 2δ2

γW̃

E
[∥∥∥x̃(0)∥∥∥2] , (6.24)

where γW̃ defined in (6.20) depending on three regimes in Lemma 10.

Next, we define the quantities

γIN−W := max
{
1−

∣∣λW
2

∣∣ , 1− ∣∣λW
N

∣∣} , γ
W
:= max

{∣∣λW
2

∣∣ , ∣∣λW
N

∣∣} , (6.25)

so that 1 > γIN−W ≥ 1 − γ
W
> 0. In the following lemma, we derive an upper bound on ∥ṽ∥δ,K2 in

terms of ∥x̃∥δ,K2 .

Lemma 12. By taking

0 < h ≤ 1− γ
W

4γ2IN−W

∧ 1

2
, (6.26)

and δ2 ≥ 1 − h1−γW

4

(
1− γIN−W

)
> 0 in three regimes defined in Lemma 10, the following bound

holds:

∥ṽ∥δ,K2 ≤
12(h/η)

(
L2 + L ∥B∥2

)
(1− γ

W
)
(
1− γ2IN−W

)
1 +

4L2
(
1 + 2+2L

µ

)
N2µ

 ∥x̃∥δ,K2

+

6
(
L2 + L ∥B∥2

)
Nµ

+N

 · 8(h/η)

(1− γ
W
)
(
1− γ2IN−W

) · ησ2 + 2d

δ2K−2

+
12δ2(h/η)

(
L2 + L ∥B∥2

)
ηµ(1− γ

W
)
(
1− γ2IN−W

) E
[∥∥∥e(0)x

∥∥∥2]+ 4δ2

h(1− γ
W
)
(
1− γ2IN−W

) ∥∥∥ṽ(0)∥∥∥2 . (6.27)

Now one can immediately derive from Lemma 11 and Lemma 12 that

∥x̃∥δ,K2 ≤ ηγ1 ∥ṽ∥δ,K2 + η
w1(ησ

2 + 2d)

Nδ2K−2
+ δ2E1E

[∥∥∥e(0)x

∥∥∥2]+ δ2E2E
[∥∥∥x̃(0)∥∥∥2] , (6.28)

∥ṽ∥δ,K2 ≤ (h/η)γ2 ∥x̃∥δ,K2 + (h/η)
w2(ησ

2 + 2d)

Nδ2K−2

+ δ2(h/η)(E3/η)E
[∥∥∥e(0)x

∥∥∥2]+ δ2(E4/h)E
[∥∥∥ṽ(0)∥∥∥2] , (6.29)

15

where the constants are defined as:

γ1 :=
1

γW̃

(
1

L
+ 2 +

1

Lµ

)
, γ2 :=

12
(
L2 + L ∥B∥2

)
(1− γ

W
)
(
1− γ2IN−W

)
1 +

4L2
(
1 + 2+2L

µ

)
N2µ

 , (6.30)

and

w1 := 2

(
N2 + 1

γW̃

+
4

γW̃

· (L/µ+ 3ηL− 1)

)
, (6.31)

w2 :=

6
(
L2 + L ∥B∥2

)
Nµ

+N

 · 8

(1− γ
W
)
(
1− γ2IN−W

) , (6.32)

E1 :=
8

γW̃

(L/µ+ 3ηL− 1) , E2 :=
2

γW̃

, (6.33)

E3 :=
12
(
L2 + L ∥B∥2

)
µ(1− γ

W
)
(
1− γ2IN−W

) , E4 :=
4

(1− γ
W
)
(
1− γ2IN−W

) , (6.34)

where h ≤ 1−γW

4γ2
IN−W

∧ 1
2 from Lemma 12.

We note that if h = 0, then U = W̃ −W = 0, and by (3.16) and (6.13), we have ṽ(0) = v(0) = 0,

and we observe from (B.60) in the proof,
∥∥ṽ(k+1)

∥∥2 =
∥∥ṽ(k)∥∥2 = · · · =

∥∥ṽ(0)∥∥2 = 0; hence, we have

∥ṽ∥δ,K2 = 0. In the case h = 0, we can get from (6.29) that

∥x̃∥δ,K2 ≤ η
w1(ησ

2 + 2d)

Nδ2K−2
+ δ2E1E

[∥∥∥e(0)x

∥∥∥2]+ δ2E2E
[∥∥∥x̃(0)∥∥∥2] , (6.35)

and moreover, EXTRA SGLD algorithm reduces to DE-SGLD when h = 0, and our result implies:

E
[∥∥∥x(K) − x(K)

∥∥∥2] ≤ δ2K ∥x̃∥δ,K2

≤ η2δ2
w1σ

2

N
+ ηδ2

2dw1

N
+ δ2K+2E1E

[∥∥∥e(0)x

∥∥∥2]+ δ2K+2E2E
[∥∥∥x̃(0)∥∥∥2] .

(6.36)

This bound is of the same order as the one shown by Lemma 6 from [GGHZ21]. Suppose h ̸= 0,

we present upper bounds on ∥x̃∥δ,K2 and ∥ṽ∥δ,K2 for EXTRA SGLD algorithm as follows.

Theorem 13. Assume that the stepsize η satisfies

0 < η <
1

hγ1γ2
∧ γW̃

6(L+ µ) ∨ 2A
∧ 1, (6.37)

where

0 < h ≤ 1− γ
W

4γ2IN−W

∧ 1

2
∧ 1

γ1γ2
, (6.38)

16

so that the condition in (6.26) is satisfied. Moreover, the constant A is defined in (6.23) and γW̃

defined by
∣∣λW̃

2

∣∣2 in (6.20). Under the conditions in Lemma 12, for any constant δ in three regimes

depending on
∣∣λW̃

2

∣∣2 from Lemma 10, and furthermore, it satisfies:

δ2 ∈
[(

1− ηµ

2

(
1− ηL

2

))
∨
(
1− h

1− γ
W

4

(
1− γIN−W

))
, 1

)
, (6.39)

then it holds that:

∥x̃∥δ,K2 ≤ η2

δ2K−2
· (w2γ1(h/η) + w1)σ

2/N

1− hγ1γ2
+

η

δ2K−2
·

[
2d (w2γ1(h/η) + w1) /N

1− hγ1γ2

+
γ1

1− hγ1γ2
δ2K

(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])]+ δ2D0, (6.40)

and

∥ṽ∥δ,K2 ≤ hη

δ2K−2
· γ2 (w2γ1(h/η) + w1)σ

2/N

1− hγ1γ2
+

h

δ2K−2
·

[
2γ2d (w2γ1(h/η) + w1) /N

1− hγ1γ2
+

w2σ
2

N

+
γ1γ2

1− hγ1γ2
δ2K

(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])]+ (h/η)δ2γ2D0

+ (h/η)
2dw2

Nδ2K−2
+ δ2(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ δ2(E4/h)E
[∥∥∥ṽ(0)∥∥∥2] , (6.41)

where

D0 :=
1

1− hγ1γ2

(
E1E

[∥∥∥x̃(0)∥∥∥2]+ E2E
[∥∥∥e(0)x

∥∥∥2]) , (6.42)

and γ1, γ2, w1, w2, E1, E2, E3, E4 are defined in (6.30), (6.31), (6.32), (6.33) and (6.34).

Next, we provide the uniform bounds on E
[∥∥ṽ(k)∥∥2] and E

[∥∥∇F
(
x(k)

)∥∥2]. We first use the

upper bounds on ∥x̃∥δ,K2 and ∥ṽ∥δ,K2 from Theorem 13 to get the next lemma.

Lemma 14. Under the assumptions for Theorem 13, the following bounds hold for E
[∥∥ṽ(k)∥∥2] and

E
[∥∥∇F

(
x(k)

)∥∥2] uniformly for every k = 1, 2, 3, . . .:

E
[∥∥∥ṽ(k)∥∥∥2] ≤ hδ2 · C1γ2

2L2
+ δ2k+2h · C0γ1γ2

2L2

+ δ2k+2 · ((h/η)γ2D0 + C0) + (h/η)δ2 · w2

N

(
ησ2 + 2d

)
, (6.43)

E
[∥∥∥∇F

(
x(k)

)∥∥∥2] ≤ ηδ2 (C1 + C3) + δ2η2
(
C1C2

2L2

)
+ δ2K0η (γ1C0 +D0C2)

+ δ2K0η2
(
γ1C0C2

2L2

)
+ δ2K0 (D0 + C4) + 2 ∥∇F (x∗)∥2 , (6.44)

17

where the constants are given by:

C0 :=
2L2

1− hγ1γ2

(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2]) , (6.45)

C1 :=
2L2

(
ησ2 + 2d

)
N

· w2γ1(h/η) + w1

1− hγ1γ2
, (6.46)

C2 :=
2L4

N2
(
δ2 + ηµ

(
1− ηL

2

)
− 1
)
η +

1 + ηL

µ
(
1− ηL

2

)
 , (6.47)

C3 :=
2L2

N
· ησ2 + 2d

δ2 + ηµ
(
1− ηL

2

)
− 1

, (6.48)

C4 :=
2L2

δ2 + ηµ
(
1− ηL

2

)
− 1

E
[∥∥∥e(0)x

∥∥∥2] , (6.49)

and D0 is defined in (6.42), E3, E4 are defined in (6.34) and w1, w2 are defined in (6.31)-(6.32).

As an immediate corollary of Lemma 14, we obtain the following upper bounds for E
[∥∥ṽ(k)∥∥2]

and E
[∥∥∇F

(
x(k)

)∥∥2] that are uniform in k when k is larger than a specific lower bound.

Corollary 15. Under the assumptions for Theorem 13, for any k ≥ K0, we have

E
[∥∥∥ṽ(k)∥∥∥2] ≤ Rh, E

[∥∥∥∇F
(
x(k)

)∥∥∥2] ≤ R′
h, (6.50)

Rh := hδ2
(
C1γ2
2L2

+
C0γ1γ2
2L2

)
+ (h/η)δ2

(
γ2D0 +

w2

N

(
ησ2 + 2d

))
+ ∥∇F (x∗)∥2 , (6.51)

R′
h := ηδ2 (C1 + C3 + γ1C0 +D0C2) + δ2η2

(
C1C2

2L2
+

γ1C0C2

2L2

)
+ 3 ∥∇F (x∗)∥2 , (6.52)

and

K0 :=
δ2

1− δ2

[(
1− ∥∇F (x∗)∥2

D0 + C4

)
∨

(
1− ∥∇F (x∗)∥2

C0

)]
∨ 0. (6.53)

Now we are ready to present our main technical result on the error between the iterate x(k) and
their average (taken over N agents) x(k) after k iterations:

x(k) =
1

N

N∑
i=0

x
(k)
i ∈ Rd, x(k) =

[(
x(k)

)T
,
(
x(k)

)T
, . . . ,

(
x(k)

)T]T
∈ RNd. (6.54)

We have the next corollary.

Corollary 16. With the assumptions for Theorem 13, it holds for k ≥ K0, with K0 given in (6.53),

N∑
i=1

E
[∥∥∥x(k)i − x(k)

∥∥∥2] ≤ 4 (γ
W̃
)2k E

[∥∥∥x(0)∥∥∥2]+ 8η2 ·
Rh +R′

h

(1− γ
W̃
)2

+
4η2σ2N

1− γ2
W̃

+
8ηdN

1− γ2
W̃

, (6.55)

where Rh, R
′
h are defined in (6.51)-(6.52) and γ

W̃
:= max

{∣∣λW̃

2

∣∣ , ∣∣λW̃

N

∣∣} ∈ [0, 1).

18

In order to sample from the Gibbs distribution, we recall the decomposition (6.1):

1

N

N∑
i=1

W2

(
L
(
x
(k)
i

)
, π
)
≤ 1

N

N∑
i=1

W2

(
L
(
x
(k)
i

)
, L
(
x(k)

))
+W2

(
L
(
x(k)

)
, π
)
. (6.56)

The first term in (6.56) can be bounded by Corollary 16 as follows:

1

N

N∑
i=1

W2

(
L
(
x
(K)
i

)
, L
(
x(K)

))
≤

(
1

N

N∑
i=1

E
[∥∥∥x(K)

i − x(K)
∥∥∥2])1/2

≤ η · D1√
N

+
√
η ·D2 +

2 (γ
W̃
)K√

N

√
E
[∥∥x(0)∥∥2], (6.57)

where

D1 := 2

√
2(Rh +R′

h)

1− γ
W̃

+
2σ√
1− γ2

W̃

, D2 := 2

√
2d

1− γ2
W̃

. (6.58)

6.1.2 L2 distance between x(k) and xk

Next, we upper bound the second term in (6.56), which, according to (6.2), can be bounded as

W2

(
L
(
x(k)

)
, π
)
≤ W2

(
L
(
x(k)

)
,L(xk)

)
+W2 (L(xk), π) , (6.59)

where xk given in (6.3) is the Euler-Maruyama discretization of the overdamped Langevin SDE
(6.4). First, we bound the first term in (6.59) by providing the an upper bound on the L2 distance
between the average iterate x̄(k) and xk.

Since W is doubly stochastic, we can compute Wx(k) = x(k), that is x(k) is consensual, similarly,
we also have 1

N (1N1TN)Tx(k) = x(k) for k = 1, 2, The following mean iterates can be found by
taking average of (3.11).

x(k+1) = x(k) − η
1

N

N∑
i=1

∇fi

(
x
(k)
i

)
− ηξ

(k)
+
√
2ηw(k+1), (6.60)

we can find the mean iterates have the same format as the one of decentralized stochastic gradient
Langevin dynamics in [GGHZ21]. Then, we can get

x(k+1) = x(k) − η

N
∇f

(
x(k)

)
+ ηÊk+1 − ηξ

(k)
+
√
2ηw(k+1), (6.61)

where the error term is

Êk+1 :=
1

N

N∑
i=1

(
∇fi

(
x(k)

)
−∇fi

(
x
(k)
i

))
. (6.62)

On the other hand, we recall from (6.3) that xk is the Euler-Maruyama discretization of overdamped
Langevin diffusion (6.4) with the iterates:

xk+1 = xk −
η

N
∇f (xk) +

√
2ηw(k+1). (6.63)

19

Hence, we get

x(k+1) − xk+1 = x(k) − xk −
η

N

(
∇f

(
x(k)

)
−∇f (xk)

)
+ ηÊk+1 − ηξ

(k)
. (6.64)

Now, we are ready to state the next corollary to bound L2 distance between the mean x(k) in (6.61)
and discretized overdamped Langevin iterate xk in (6.63).

Corollary 17. Suppose η < 2
L ∧ 1, under assumptions in Corollary 16, then there holds

E
[∥∥∥x(k) − xk

∥∥∥2] ≤ η

(
η + (1+ηL)2

µ(1− ηL
2)

)(
η2 · 4L2

N

(
2(Rh+R′

h)
(1−γW̃)2

+ σ2N
1−γ2

W̃

)
+ η · 8L2d

1−γ2
W̃

)
+ η2 σ

2

N

ηµ
(
1− ηL

2

)
+

γ2k
W̃

−
(
1− ηµ

(
1− ηL

2

))k
(γ

W̃
)2 − 1 + ηµ

(
1− ηL

2

) 4L2(γ
W̃
)2

N
E
∥∥∥x(0)∥∥∥2 , (6.65)

where the constants Rh, R
′
h and γ

W̃
are defined in Lemma 14 and Corollary 16.

6.1.3 W2 distance between the law of xk and the Gibbs distribution π

Next, we provide the 2-Wassestein distance between the law of xk in (6.63), which is the Euler-
Maruyama discretization of (6.4) and the Gibbs distribution π. We note that the function 1

N f is µ-
strongly convex and L-smooth. We simply quote an existing result, that is, Theorem 4 from [DK19]
restated in the next lemma.

Lemma 18 (Theorem 4 in [DK19]). For any η ∈
(
0, 2N

L+µ

]
, we have

W2 (L (xK) , π) ≤ (1− µη)KW2 (L (x0) , π) +
1.65L

µ

√
dN−1

√
η. (6.66)

Now, we are finally ready to complete the proof of Theorem 4.

6.1.4 Completing the proof of Theorem 4

Under our assumptions, the conditions in Theorem 13 are satisfied, so that one can apply Corol-
lary 16, Corollary 17 and Lemma 18. Note that Corollary 17 and Lemma 18 give the bound on the
second term in decomposition (6.56) such that it follows that:

W2

(
L
(
x(k)

)
, π
)

≤
(
E
[∥∥∥x(k) − xk

∥∥∥2])1/2

+W2 (L (xk) , π)

≤

γ2k
W̃

−
(
1− ηµ

(
1− ηL

2

))k
γ2

W̃
− 1 + ηµ

(
1− ηL

2

)


1/2

2Lγ
W̃√

N

(
E
∥∥∥x(0)∥∥∥2)1/2

+ (1− µη)KW2 (L (x0) , π) +
√
ηE1,

(6.67)

20

where we have

E1 :=

 η

µ
(
1− ηL

2

) +
(1 + ηL)2

µ2
(
1− ηL

2

)2


1/2

·
(
4L2 (Rh +R′

h) η

N(1− γ
W̃
)2

+
4L2σ2η

1− γ2
W̃

+
8L2d

1− γ2
W̃

)1/2

+
σ√

µ
(
1− ηL

2

)
N

+
1.65L

µ

√
dN−1, (6.68)

and this proves (4.3). Finally, by (6.56), (6.57) (which follows from Corollary 16) and (6.67), we
can derive that

1

N

N∑
i=1

W2

(
L
(
x
(K)
i

)
, π
)

≤ η · D1√
N

+
√
η · (D2 + E1) +

γ2K
W̃

−
(
1− ηµ

(
1− ηL

2

))K
γ2

W̃
− 1 + ηµ

(
1− ηL

2

)


1/2

2Lγ
W̃√

N

(
E
∥∥∥x(0)∥∥∥2)1/2

+ (1− µη)KW2 (L (x0) , π) +
2 (γ

W̃
)K√

N

√
E
[∥∥x(0)∥∥2], (6.69)

and this completes the proof.

6.2 Proof of Proposition 5

First, we consider generalized EXTRA SGLD.We recall that one can take 1 > δ2 = 1−ηµ
2

(
1− ηL

2

)
≥

1− µη ≥ γ
W̃
where δ2 satisfies the constraint in (6.39). Therefore, for any sufficiently large K, the

term
(
1− ηµ

(
1− ηL

2

))K
dominates both terms (1 − µη)K and (γ

W̃
)2K . Hence, we can get the

order of the last three terms in (6.69) in Theorem 4 is O
(
(1− ηµ (1− ηL/2))K/2

)
.

Since 1 − x ≤ e−x for any 0 ≤ x ≤ 1, we conclude from Theorem 4, for any K ≥ K0, with K0

given in (6.53),

1

N

N∑
i=1

Wextra−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O

(√
η
(√

d+ E1
))

+O
(
e−

ηµ
2 (1−

ηL
2)K

)
, (6.70)

where E1 is defined in (4.4). Hence, for any ε → 0, we have

1

N

N∑
i=1

Wextra−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O(ε), (6.71)

provided that

η ≤ O
(

ε2

(
√
d+ E1)2

)
, (6.72)

21

and

K ≥ Kextra−sgld := K0 ∨K1 := K0 ∨ O
(
log(1/ε)

ηµ

)
= K0 ∨ O

(
log(1/ε)(

√
d+ E1)2

ε2µ

)
, (6.73)

where K0 is given in Table 1. We recall the definition of E1 from (4.4):

E1 =

 η

µ
(
1− ηL

2

) +
(1 + ηL)2

µ2
(
1− ηL

2

)2


1/2

·
(
4L2 (Rh +R′

h) η

N(1− γ
W̃
)2

+
4L2σ2η

1− γ2
W̃

+
8L2d

1− γ2
W̃

)1/2

+
σ√

µ
(
1− ηL

2

)
N

+
1.65L

µ

√
dN−1,

where the constants are given in Table 1.

Under our assumption ηL = O(1) such that O

((
η

µ(1− ηL
2)

+ (1+ηL)2

µ2(1− ηL
2)

2

)1/2
)

= O(1/µ). Thus

E1 = O
(
1

µ

(
L
√
η
√
Rh +R′

h + L
√
d
))

. (6.74)

Therefore, 1
N

∑N
i=1W

extra−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O(ε) provided that

K ≥ Kextra−sgld = K0 ∨K1 = K0 ∨ Õ
(
L2(η(Rh +R′

h) + d)

ε2µ3

)
, (6.75)

where Õ hides the logarithmic dependence on ε.

We will show that under our assumptions K0 = O
(

1
ηµ ∨ 1

h

)
and under the assumption h ≤

1
(L/µ)4(L+∥B∥2) , we will have η(Rh + R′

h) ≤ O(d) and under the assumption h ≥ Ω(ηµ), we have

K0 = O
(

1
ηµ

)
such that K ≥ Kextra−sgld = K0 ∨K1 = Õ

(
1
ηµ ∨ L2d

ε2µ3

)
= Õ

(
L2d
ε2µ3

)
.

As a first step of the proof, we spell out the dependence of the constants in Table 1 on
L, µ, d, h, η, ∥B∥2, and we summarize the results in Table 2. Next, we compute from (6.51)-(6.52):

ηRh = hηδ2
(
C1γ2
2L2

+
C0γ1γ2
2L2

)
+ hδ2

(
γ2D0 +

w2

N

(
ησ2 + 2d

))
+ η ∥∇F (x∗)∥2 , (6.76)

ηR′
h = η2δ2 (C1 + C3 + γ1C0 +D0C2) + δ2η3

(
C1C2

2L2
+

γ1C0C2

2L2

)
+ 3η ∥∇F (x∗)∥2 . (6.77)

Under the assumption h ≥ Ω(ηµ), in particular, for h/(ηµ) ≥ 1
L+∥B∥2 , we get

C1 = O
(
d(L+ ∥B∥2)(L3/µ2)(h/η) + (L2d)(L/µ)

)
≤ O

(
d(L+ ∥B∥2)L(L/µ)2(h/η)

)
. (6.78)

22

Moreover, from Table 2, we have:

γ2
2L2

(C1 + C0γ1) = O
(
dL(L+ ∥B∥2)2(L/µ)4(h/η)

)
, (6.79)

γ2D0 +
w2

N

(
ησ2 + 2d

)
= O

(
(L/µ)L2(L+ ∥B∥2)((L/µ)2 ∨ d)

)
, (6.80)

C1 + C3 + γ1C0 +D0C2 = O
(
(h/η)dL(L/µ)2(L+ ∥B∥2)

)
+O (Ld(L/µ)(1/η))

+O
(
(L/µ)2L(h/η)(L+ ∥B∥2)

)
+O

(
L2(L/µ)3(1/η)

)
= O

(
(L/µ)(h/η)(L+ ∥B∥2)Ld ∨ L2d(L/µ)3(1/η)

)
(6.81)

C2

2L2
(C1 + C0γ1) = O

(
L(L/µ)4(L+ ∥B∥2)(h/η)(d/η)

)
. (6.82)

Now we can compute (6.76) and (6.77) as follows. We first use (6.79) and (6.80) to get

ηRh = O
(
hη · dL(L+ ∥B∥2)2(L/µ)4(h/η) + h · (L/µ)L2(L+ ∥B∥2)((L/µ)2 ∨ d)

)
= O

(
h2 · dL(L+ ∥B∥2)2(L/µ)4 + h · (L/µ)L2(L+ ∥B∥2)((L/µ)2 ∨ d)

)
≤ O

(
hdL(L+ ∥B∥2)

(
1 + (L/µ)

(
(L/µ)2

d
∨ 1

)))
(6.83)

≤ O
(
hdL(L/µ)(L+ ∥B∥2)

(
1 +

(
(L/µ)2 + d

d

)))
≤ O

(
hdL(L/µ)(L+ ∥B∥2) · (L/µ)

2d

d

)
= O

(
hdL(L/µ)3(L+ ∥B∥2)

)
, (6.84)

where we used the assumption

h ≤ 1

(L/µ)4(L+ ∥B∥2)
, (6.85)

to get h2dL(L + ∥B∥2)2(L/µ)4 ≤ hdL(L + ∥B∥2) in (6.83). Next, we use (6.81) and (6.82) to
compute that

ηR′
h = O

(
η2 ·

(
(L/µ)(h/η)(L+ ∥B∥2)Ld ∨ dL2(L/µ)3(1/η)

)
+ η3 · L(L/µ)4(L+ ∥B∥2)(h/η)(d/η)

)
= O

(
η ·
(
(L/µ)h(L+ ∥B∥2)Ld ∨ dL2(L/µ)3

)
+ (L/µ)4(L+ ∥B∥2)hd

)
(6.86)

≤ O
(
ηdL2(L/µ3) + (L/µ)4(L+ ∥B∥2)hd

)
(6.87)

≤ O
(
h(d/µ)(L/µ)3 + (L/µ)4(L+ ∥B∥2)hd

)
(6.88)

= O
(
hd(L/µ) · (L/µ)3(L+ ∥B∥2)

)
, (6.89)

where we used ηL ≤ 1 to get (6.86), and moreover, we used the assumption (6.85) to get (6.87) and
then used the assumption h ≥ Ω(ηµ) again to get (6.88). As a consequence, we can compute that

η(Rh +R′
h) = O

(
hd(L/µ)4(L+ ∥B∥2)

)
≤ O (d) , (6.90)

where we use (6.85) again in the last inequality. Now we can compute the term in (6.75) such that

Õ
(
L2(η(Rh +R′

h) + d)

ε2µ3

)
= Õ

(
L2d

ε2µ3

)
. (6.91)

23

To compute the term K0 in (6.75), we use Table 2 to get

D0 + C4 = O(L(L/µ)(1/η)), C0 = O(L2(L/µ)(h/η)(L+ ∥B∥2)), (6.92)

δ2 = O(1),
1

1− δ2
= O

(
1

ηµ
∨ 1

h

)
. (6.93)

Under the setting in (6.85), we have h ≤ 1
L(L+∥B∥2) , then we get(

1− ∥∇F (x∗)∥2

D0 + C4

)
∨

(
1− ∥∇F (x∗)∥2

C0

)
= O

(
1− 1

L(L/µ)(1/η)

)
= O(1). (6.94)

Hence, we can compute from (6.53) such that

K0 =
δ2

1− δ2

[(
1− ∥∇F (x∗)∥2

D0 + C4

)
∨

(
1− ∥∇F (x∗)∥2

C0

)]
∨ 0 = O

(
1

ηµ
∨ 1

h

)
= O

(
1

ηµ

)
, (6.95)

where we used the assumption h ≥ Ω(ηµ). We recall from (6.70) and (6.75) that for generalized
EXTRA SGLD:

1

N

N∑
i=1

Wextra−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O

(√
η
(√

d+ E1
))

+O
(
e−

ηµ
2 (1−

ηL
2)K

)
. (6.96)

Hence, we conclude that for any ε → 0,

1

N

N∑
i=1

Wextra−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O(ε), (6.97)

provided that

η ≤ O
(

ε2

(
√
d+ E1)2

)
, and K ≥ Kextra−sgld = K0 ∨K1 = Õ

(
L2d

ε2µ3

)
, (6.98)

where we used (6.75), (6.91), (6.95) and K1 = O
(
log(1/ε)

ηµ

)
= Õ

(
log(1/ε)

ηµ

)
from (6.73).

Next, we consider DE-SGLD. For DE-SGLD, it follows from Theorem 1 in [GGHZ21] that:

1

N

N∑
i=1

Wde−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O

(
e−

ηµ
2 (1−

ηL
2)K

)
+O

(√
η
(√

d+ E ′
1

))
, (6.99)

where

E ′
1 : =

1.65L

µ

√
dN−1 +

σ√
µ
(
1− ηL

2

)
N

+

 η

µ
(
1− ηL

2

) +
(1 + ηL)2

µ2
(
1− ηL

2

)2


1/2

·
(

4L2D2η

N(1− γ
W̃
)2

+
4L2σ2η

1− γ2
W̃

+
8L2d

1− γ2
W̃

)1/2

,

24

with γ
W̃
:= max

{∣∣λW̃

2

∣∣ , ∣∣λW̃

N

∣∣} ∈ [0, 1) and the constant (see Lemma 6 in [GGHZ21])

D2 := 4L2E
∥∥∥x(0) − x∗

∥∥∥2 + 8L2 Ĉ2
1η

2N

(1− γ
W̃
)2

+
2L2

(
ησ2N + 2dN

)
µ
(
1 + λW̃

N − ηL
) + 4 ∥∇F (x∗)∥2 , (6.100)

where

Ĉ1 := C̄1 ·
(
1 +

2(L+ µ)

µ

)
, with C̄1 :=

√√√√2L

N∑
i=1

(fi(0)− f∗
i), f∗

i := min
x∈Rd

fi(x).

Hence, by ηL = O(1) and Ĉ2
1 = O(L3/µ2), we can compute that

D2 = O
(
L2 + L3/µ2 + Ld(L/µ)

)
= O(L3d/µ). (6.101)

Therefore, we have

E ′
1 = O

(
1

µ

(
L
√
ηD + L

√
d
))

= O
(
1

µ

(
D
√
L+ L

√
d
))

= O
(√

Ld(L/µ)
√
L/µ+ (L/µ)

√
d
)
= O

(√
Ld(L/µ)

√
L/µ

)
, (6.102)

where we use η ≤ 1/L to get the second equality in the first line. By following (6.70) and (6.75),
we conclude that

1

N

N∑
i=1

Wde−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O

(√
η
(√

d+ E ′
1

))
+O

(
e−

ηµ
2 (1−

ηL
2)K

)
≤ O

(√
η
(√

d+
√
Ld(L/µ)

√
L/µ

))
+O

(
e−

ηµ
2 (1−

ηL
2)K

)
.

(6.103)

Hence, we conclude that for any ε → 0, we have

1

N

N∑
i=1

Wde−sgld
2

(
L
(
x
(K)
i

)
, π
)
≤ O(ε), (6.104)

provided that

η ≤ O

(
ε2

(
√
d+

√
Ld(L/µ)

√
L/µ)2

)
and K ≥ Kde−sgld := Õ

(
L4d

ε2µ3

)
. (6.105)

The proof is complete.

7 Numerical Experiments

In this section, we present some results from the numerical experiments based on our algorithms
and investigate the relative performance of DE-SGLD and EXTRA SGLD. We mainly perform
Bayesian linear regression and Bayesian logistic regression by distributing the sample data evenly

25

Constants Source

γ1 =
1

γW̃

(
1

L
+ 2 +

1

Lµ

)
= O(1/µ)

γ2 =
12
(
L2 + L ∥B∥2

)
(1− γ

W
)
(
1− γ2IN−W

)
1 +

4L2
(
1 + 2+2L

µ

)
N2µ

 = O
(
L2(L/µ)2(L+ ∥B∥2)

)
w1 = 2

(
N2 + 1

γW̃

+
4

γW̃

·
(
L

µ
+ 3ηL− 1

))
= O (L/µ)

w2 =
8
(
6
(
L2 + L ∥B∥2

)
+N2µ

)
Nµ(1− γ

W
)
(
1− γ2IN−W

) = O
(
(L/µ)(L+ ∥B∥2)

)
E1 =

8

γW̃

(L/µ+ 3ηL− 1) = O(L/µ), E2 =
2

γW̃

= O(1)

E3 =
12
(
L2 + L ∥B∥2

)
µ(1− γ

W
)
(
1− γ2IN−W

) = O
(
(L/µ)(L+ ∥B∥2)

)
, E4 =

4

(1− γ
W
)
(
1− γ2IN−W

) = O(1)

C0 =

(
(h/η)E3E

[∥∥∥e(0)x

∥∥∥2]+ E4E
[∥∥∥ṽ(0)∥∥∥2]) · 2L2

1− ηγ1γ2
= O

(
L2(L/µ)(h/η)(L+ ∥B∥2)

)
C1 =

2L2
(
ησ2 + 2d

)
N

· w2γ1(h/η) + w1

1− hγ1γ2
= O

(
Ld(L+ ∥B∥2)(L/µ)2(h/η) + (L2d)(L/µ)

)

C2 =

2L4

(
η + 1+ηL

µ(1− ηL
2)

)
N2
(
δ2 + ηµ

(
1− ηL

2

)
− 1
) = O

(
L2(L/µ)2(1/η)

)
C3 =

2L2

N
· ησ2 + 2d

δ2 + ηµ
(
1− ηL

2

)
− 1

= O (Ld(L/µ)(1/η))

C4 =
2L2

δ2 + ηµ
(
1− ηL

2

)
− 1

E
[∥∥∥e(0)x

∥∥∥2] = O(L(L/µ)(1/η))

D0 =
1

1− hγ1γ2

(
E1E

[∥∥∥x̃(0)∥∥∥2]+ E2E
[∥∥∥e(0)x

∥∥∥2]) = O(L/µ)

δ2 ∈
[(

1− ηµ

2

(
1− ηL

2

))
∨
(
1− h

1− γ
W

4

(
1− γIN−W

))
, 1

)
, δ2 = O(1),

δ2

1− δ2
= O

(
1

ηµ
∨ 1

h

)

Table 2: Summary of the constants in the proof of Proposition 5.

26

(a) Fully connected (b) Circular (c) Star (d) Disconnected

Figure 1: Different types of network structures

among the agents or nodes of different network structures. We ensure that each agent receives
randomly distributed independent and identically distributed (i.i.d.) sample data.

Figure 1 represents four different types of networks: (a) fully connected network, (b) circular
network, (c) star network, and (d) fully disconnected network where no agents are connected. A
fully connected network is a structure in which all nodes are connected to each other. In contrast,
a circular network is one in which each node is only connected to its immediate left and right
neighbors. Additionally, in a star-shaped structure, the central node is connected to all other
nodes, but those nodes are not connected to each other.

7.1 Network architecture

We follow the common approach to select the communication matrix W = IN − δL where IN is
the N ×N identity matrix, L is the graph Laplacian, and δ > 0 is a small number [Chu97]. In our
experiments, we select δ in the following way. First, we compute the graph Laplacian L = (Ddeg−A)
from the degree matrix Ddeg and the adjacency matrix A. The degree Ddeg is a diagonal matrix
with the entries in the main diagonal representing the degree of connections of each node and the
adjacent matrix A = (aij)1≤i,j≤N is the matrix with aij = 1 if there is an edge between the nodes i
and j otherwise aij = 0. Then we choose δ at random so that 0 < δ < 2

λL
N

, where λL
N is the largest

real eigenvalue of L. For example, a star-like graph with N vertices is given by

W = IN − δL =



1− δ(N − 1) δ δ · · · δ δ
δ 1− δ 0 0 · · · 0
δ 0 1− δ 0 · · · 0
...

...
...

...
...

...
δ 0 · · · 0 1− δ 0
δ 0 · · · · · · 0 1− δ


.

For the EXTRA SGLD algorithm, we compute that W̃ = hIN − (1− h)W for h ∈ (0, 1/2].

27

7.2 Bayesian linear regression

First, we present the Bayesian linear regression with the synthetic data that we generate by simu-
lating the following model:

δi ∼ N (0, ξ2), Xi ∼ N (0, I2), yi = βTXi + δi, (7.1)

where the white noise δi’s are i.i.d. scalars with ξ = 1, β ∈ R2, and I2 is the 2× 2 identity matrix.
The prior distribution of β follows N (0, λI2), and we set λ = 10 for this set of experiments. The
posterior distribution can be derived from the following model

π(β) ∼ N (m,V), m :=

(
Σ−1 +

XTX

ξ2

)−1(
XT y

ξ2

)
, V :=

(
XTX

ξ2
+Σ−1

)−1

,

where Σ = λI2 is the covariance matrix of the prior of β, and X =
[
XT

1 , X
T
2 , · · ·

]T
and Y =

[y1, y2, · · ·]T are the input and output matrices, respectively. For this experiment, we simulate 5000
data points using the model (7.1) and then we distribute these data points randomly among the
N = 20 agents. All agents have an equal amount of data exclusively, and share only the parameter
estimates. The posterior distribution π(β) ∝ e−f(β) where f(β) =

∑N
i=1 fi(β) with

fi(β) := −
ni∑
j=1

log p
(
yij |β,Xi

j

)
− 1

N
log p(β) =

ni∑
j=1

(
yij − βTXi

j

)2
+

1

2λN
∥β∥2,

where

p
(
yij |β,Xi

j

)
=

1√
2πξ2

e
− 1

2ξ2
(yij−βTXi

j)
2

, p(β) ∝ e−
1
2λ

∥β∥2 ,

and each agent i has an equal number of ni = 50 data points {(Xi
j , y

i
j)}

ni
j=1.

We report the results of the EXTRA SGLD algorithm as follows. Figure 2 presents the results
of the four networks. We restrict the experiments with a deterministic gradient, i.e. σ = 0 and a
fixed step size η = 0.009. The doubly stochastic mixing matrix W̃ = hIN − (1− h)W is calculated
for different values of the parameter h. We consider 5 linearly spaced h values with the minimum
being 0.001 and the maximum being 0.5 and we tune up the parameter h to the network. For the
fully connected network h = 0.50, circular network h = 0.38, star network h = 0.13, and for the

disconnected network h = 0.38. In this setup, the iterations β
(k)
i ∼ N

(
m

(k)
i ,Σ

(k)
i

)
for some mean

vector m
(k)
i and covariance matrix Σ

(k)
i , by using the formula from [GS84], we can compute the

2-Wasserstein distance, W2 with the posterior distribution π(β) ∼ N (m,V). From 200 independent

runs, we can estimate m
(k)
i and Σ

(k)
i and then plot the W2 distance of the stationary distribution

for each agent and the distribution of the average β̄(k) = 1
N

∑N
i β

(k)
i . From the plot, we see that

for the first three network types, all the agents converge to the posterior distribution up to some
error level. However, the convergence for the star-type network is not as good as compared to a
fully connected and circular-type network. In the case of a disconnected network, individual agents
perform relatively worse compared to other scenarios where the network is connected, as they are
unable to leverage information from their neighbors’ data points. We also notice that the conver-
gence is better for strongly connected networks, i.e. as the agent in a network loses its connectivity,
the convergence becomes slower.

28

Figure 2: Performance of the EXTRA SGLD for Bayesian linear regression on four different network
structures. Out of 20 agents, we report only the first 4 agents and the mean of the nodes β̄(k) =
1
N

∑N
i=1 β

(k)
i .

Next, we present the comparative analysis of the performances of the DE-SGLD and EXTRA
SGLD algorithms. In this case, instead of computing the W2 distances for each agent, we compute
the W2 distances of the mean of the agents from the posterior distribution π(β) ∼ N (m,V) for all
four networks. Then we compute the minimum of these distances for each network and plot them
against the mean of the nodes from the DE-SGLD algorithm in the same plot which is represented
in Figure 3.

Figure 3: Comparative performance of the DE-SGLD and EXTRA SGLD for Bayesian linear
regression on four different network structures in terms of the W2 distance of mean agents

Figure 4: Histogram of the comparative performances of the DE-SGLD and EXTRA SGLD for
Bayesian linear regression on four different network structures.

29

In the comparative analysis of EXTRA SGLD and DE-SGLD, the performance is evaluated
across various network structures, as shown in Figures 3 and 4. Figure 3 illustrates the W2 distance
of the mean agents over 200 iterations for fully connected, circular, star, and disconnected networks,
revealing that EXTRA SGLD consistently achieves faster and more stable convergence than DE-
SGLD for any h ∈ (0, 1/2]. Figure 4, which depicts histograms of distance distributions on a
logarithmic scale at specific iterations, shows that EXTRA SGLD achieves a more concentrated
distribution near zero, indicating better convergence. Asymptotically, both algorithms stabilize,
but EXTRA SGLD reaches a smaller quantity inW2 distance, highlighting its efficiency in attaining
consensus, especially in the more challenging disconnected setting.

7.3 Bayesian logistic regression with synthetic data

To test the performance of our algorithm, we first implement the Bayesian logistic regression on
synthetic data. Ideally, we have a dataset Z = {zj}nj=1 where zj = (Xj , yj), Xj ∈ Rd are the features
and yj ∈ {0, 1} are the labels with the assumption that Xj are independent and the probability
distribution of yj given Xj and regression coefficients β ∈ Rd is given by

P(yj = 1|Xj , β) =
1

1 + e−βTXj
. (7.2)

The prior distribution p(β) ∼ N (0, λI3) for some λ > 0, where I3 is the 3 × 3 identity matrix
[CFM+18, DRW+16, ZXG18]. In a distributed network system, if each agent i contains a subset
Zi of data, then the goal of the Bayesian logistic regression is to sample from π(β) ∝ e−f(β) with
f(β) =

∑N
i=1 fi(β) where

fi(β) := −
ni∑
j=1

log p
(
yij = 1|Xi

j , β
)
− 1

N
log p(β) =

ni∑
j=1

log
(
1 + e−βTXj

)
+

1

2Nλ
∥β∥2 (7.3)

is strongly convex and smooth. We generate the synthetic data from the following model

Xj ∼ N (0, 20I3), pj ∼ U(0, 1), yj =

{
1 if pj ≤ 1

1+e−βTXj
,

0 otherwise,

where U(0, 1) is the uniform distribution on [0, 1], β = [β1, β2, β3]
T ∈ R3 and the prior distribution

β ∼ N (0, λI3), where I3 is the 3× 3 identity matrix. For this experiment, we take λ = 10 just like
the linear regression, but we limit the number of nodes to N = 6 and distribute the data points
equally to each node. For Bayesian logistic regression, we consider 10 linearly spaced h values and
tune the parameter to the network style. For the fully connected network, we take h = 0.111,
circular network h = 0.056, star network h = 0.001 and for the disconnected network h = 0.445.
For each node i, we calculate their accuracy over n = 1000 data points and 20 runs with batch
size b = 32 and step size η = 0.005. However, unlike Bayesian linear regression, Bayesian logistic
regression does not have a closed-form solution for the posterior distribution π(β). Therefore, in
order to compute W2 distance between the prior and posterior distributions for Bayesian logistic
regression, one may need to run the algorithm over many iterations which is not practical. For
these shortcomings, we apply a different technique to measure the performance of the algorithm
which is the distribution of the accuracy over the whole data set. This accuracy measure is defined
as the ratio of the correctly predicted labels over the whole data set. Since our experiments are

30

Figure 5: Accuracy distribution of the EXTRA SGLD method across different network structures
at a randomly selected node.

identical except for the h parameters to that of the DE-SGLD.

Figure 5 shows the mean and standard deviation of the accuracy distribution of the agent i
using the DE-SGLD and EXTRA SGLD algorithms. It is clearly noticeable from Figure 5 that,
from left to right, all three networks provide somewhat better accuracy than the disconnected one.
We also see that for any h ∈ (0, 1/2], EXTRA SGLD performs slightly better than DE-SGLD in
general in terms of the accuracy distribution irrespective of network structures.

7.4 Bayesian logistic regression with real data

At this point, we implement our algorithms for real data. In this case, we consider the UCI ML
Breast Cancer Wisconsin (Diagnostic) data set [WMSS95]. The data set contains 569 instances
with 30 features which are computed from a digitized image of a fine needle aspirate (FNA) of a
breast mass. For this experiment, we keep the other parameters same as the logistic regression with
synthetic data except for the EXTRA parameter h. In this case, we take h = 0.278, 0.389, 0.167,
and 0.278 for fully connected network, circular network, star network, and disconnected network,
respectively.

Figure 6: Comparative accuracy distribution of the DE-SGLD and EXTRA SGLD method across
different network structures on Breast Cancer data set. The plots are from a randomly selected
node.

Figure 6 represents the comparative accuracy distribution of the DE-SGLD and EXTRA SGLD
algorithms for Bayesian logistic regression type problems. Both algorithms exhibit a rapid increase
in accuracy during the initial iterations. EXTRA SGLD and DE-SGLD behave similarly in the

31

early stages; but when the number of iterations increases, EXTRA SGLD achieves a higher accu-
racy. The shaded regions around the accuracy curves indicate the variance, with EXTRA SGLD
demonstrating less variability in general, which implies a more stable performance. As iterations
progress, both algorithms converge towards their maximum accuracy. Nonetheless, EXTRA SGLD
maintains a slight edge, reaching a higher asymptotic accuracy and showcasing a reliable conver-
gence behavior across fully connected, circular, star, and disconnected network structures.

8 Conclusion

Langevin algorithms are widely used Markov Chain Monte Carlo methods in Bayesian learning,
particularly for sampling from a parametric model’s posterior distribution based on input data
and prior parameter distributions. Their stochastic variants, such as stochastic gradient Langevin
dynamics (SGLD), facilitate iterative learning using mini-batches from large datasets, making them
scalable. However, in scenarios where data are decentralized across a network with communication
and privacy restrictions, standard SGLD approaches are unsuitable. To address this, we utilize
decentralized SGLD (DE-SGLD) algorithms, which enable collaborative Bayesian learning across
a network of agents without sharing individual data points. Despite their advantages, existing DE-
SGLD algorithms introduce a bias at each agent that can degrade performance. This bias persists
even with full-batch processing and stems from network-related effects. Inspired by the EXTRA
algorithm and its generalizations for decentralized optimization, we introduce a generalized EXTRA
SGLD that eliminates this bias in full-batch scenarios. Additionally, we demonstrate that, in the
mini-batch context, our algorithm offers performance bounds that significantly surpass those of
conventional DE-SGLD algorithms. Our empirical results further validate the effectiveness of our
approach.

Acknowledgments

Mert Gürbüzbalaban’s research is supported in part by the grants Office of Naval Research Award
Number N00014-21-1-2244, National Science Foundation (NSF) CCF-1814888, NSF DMS-2053485.
Mohammad Rafiqul Islam is partially supported by the grant NSF DMS-2053454. Xiaoyu Wang is
supported by the Guangzhou-HKUST(GZ) Joint Funding Program (No.2024A03J0630), Guangzhou
Municipal Key Laboratory of Financial Technology Cutting-Edge Research. Lingjiong Zhu is par-
tially supported by the grants NSF DMS-2053454 and DMS-2208303.

References

[ABC+20] Yossi Arjevani, Joan Bruna, Bugra Can, Mert Gürbüzbalaban, Stefanie Jegelka, and
Hongzhou Lin. IDEAL: Inexact DEcentralized accelerated augmented Lagrangian
method. In Advances in Neural Information Processing Systems, volume 33, 2020.

[AFGO19] Necdet Serhat Aybat, Alireza Fallah, Mert Gurbuzbalaban, and Asuman Ozdaglar. A
universally optimal multistage accelerated stochastic gradient method. In Advances in
Neural Information Processing Systems, volume 32, 2019.

32

[BCM+21] Mathias Barkhagen, Ngoc Huy Chau, Éric Moulines, Miklós Rásonyi, Sotirios Sabanis,
and Ying Zhang. On stochastic gradient Langevin dynamics with dependent data
streams in the logconcave case. Bernoulli, 27(1):1–33, 2021.

[Bot10] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[CB18] Xiang Cheng and Peter L. Bartlett. Convergence of Langevin MCMC in KL-divergence.
In Proceedings of the 29th International Conference on Algorithmic Learning Theory
(ALT), volume 83, pages 186–211. PMLR, 2018.

[CFM+18] Niladri Chatterji, Nicolas Flammarion, Yian Ma, Peter Bartlett, and Michael Jordan.
On the theory of variance reduction for stochastic gradient Monte Carlo. In Interna-
tional Conference on Machine Learning, volume 80, pages 764–773. PMLR, 2018.

[Chu97] Fan RK Chung. Spectral Graph Theory, volume 92. American Mathematical Society,
1997.

[CMR+21] Ngoc Huy Chau, Éric Moulines, Miklos Rásonyi, Sotirios Sabanis, and Ying Zhang. On
stochastic gradient Langevin dynamics with dependent data streams: the fully non-
convex case. SIAM Journal of Mathematics of Data Science, 3(3):959–986, 2021.

[Dal17] Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and
log-concave densities. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(3):651–676, 2017.

[DK19] Arnak S Dalalyan and Avetik Karagulyan. User-friendly guarantees for the Langevin
Monte Carlo with inaccurate gradient. Stochastic Processes and their Applications,
129(12):5278–5311, 2019.

[DM17] Alain Durmus and Eric Moulines. Non-asymptotic convergence analysis for the Unad-
justed Langevin Algorithm. Annals of Applied Probability, 27(3):1551–1587, 2017.

[DM19] Alain Durmus and Eric Moulines. High-dimensional Bayesian inference via the Unad-
justed Langevin Algorithm. Bernoulli, 25(4A):2854–2882, 2019.

[DRW+16] Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poczos,
Alexander J Smola, and Eric P Xing. Variance reduction in stochastic gradient Langevin
dynamics. In Advances in Neural Information Processing Systems, pages 1154–1162,
2016.

[EHZ22] Murat A. Erdogdu, Rasa Hosseinzadeh, and Matthew S. Zhang. Convergence analysis
of Langevin Monte Carlo in chi-square and Rényi divergence. In Proceedings of the 25th
International Conference on Artificial Intelligence and Statistics (AISTATS), volume
151, pages 8151–8175. PMLR, 2022.

[FGO+22] Alireza Fallah, Mert Gürbüzbalaban, Asuman Ozdaglar, Umut Şimşekli, and Lingjiong
Zhu. Robust distributed accelerated stochastic gradient methods for multi-agent net-
works. Journal of Machine Learning Research, 23(220):1–96, 2022.

33

[GDG19] Eduard Gorbunov, Darina Dvinskikh, and Alexander Gasnikov. Optimal decentralized
distributed algorithms for stochastic convex optimization. arXiv:1911.07363, 2019.

[GGHZ21] Mert Gürbüzbalaban, Xuefeng Gao, Yuanhan Hu, and Lingjiong Zhu. Decentralized
stochastic gradient Langevin dynamics and Hamiltonian Monte Carlo. Journal of Ma-
chine Learning Research, 22(1):10804–10872, 2021.

[GS84] Clark R Givens and Rae Michael Shortt. A class of Wasserstein metrics for probability
distributions. Michigan Mathematical Journal, 31(2):231–240, 1984.

[HBJ18] Lie He, An Bian, and Martin Jaggi. COLA: Decentralized linear learning. In Advances
in Neural Information Processing Systems, pages 4536–4546, 2018.

[HBM19] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An accelerated decentral-
ized stochastic proximal algorithm for finite sums. In Advances in Neural Information
Processing Systems, volume 32, pages 954–964, 2019.

[Hof09] Peter D Hoff. A First Course in Bayesian Statistical Methods, volume 580. Springer,
2009.

[Jak18] Dušan Jakovetić. A unification and generalization of exact distributed first-order meth-
ods. IEEE Transactions on Signal and Information Processing over Networks, 5(1):31–
46, 2018.

[Ned20] Angelia Nedic. Distributed gradient methods for convex machine learning problems in
networks: Distributed optimization. IEEE Signal Processing Magazine, 37(3):92–101,
2020.

[NO09] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

[Pav14] Grigorios A Pavliotis. Stochastic Processes and Applications: Diffusion processes, the
Fokker-Planck and Langevin Equations, volume 60. Springer, 2014.

[PBGG20] Anjaly Parayil, He Bai, Jemin George, and Prudhvi Gurram. Decentralized Langevin
dynamics for Bayesian learning. In Advances in Neural Information Processing Systems,
volume 33, 2020.

[PS17] Nicholas G. Polson and Vadim Sokolov. Deep learning: A Bayesian perspective.
Bayesian Analysis, 12(4):1275–1304, 2017.

[RRT17] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via
stochastic gradient Langevin dynamics: a nonasymptotic analysis. In Conference on
Learning Theory, volume 65, pages 1674–1703. PMLR, 2017.

[SBB+19] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Lee, and Laurent Massoulié. Op-
timal convergence rates for convex distributed optimization in networks. Journal of
Machine Learning Research, 20:1–31, 2019.

34

[SKP+20] Brian Swenson, Soummya Kar, H. Vincent Poor, José M. F. Moura, and Aaron Jaech.
Distributed gradient methods for nonconvex optimization: Local and global convergence
guarantees. arXiv e-prints, page arXiv:2003.10309, March 2020.

[SLWY15] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. EXTRA: An exact first-order algorithm
for decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–
966, 2015.

[SSP20] Brian Swenson, Anirudh Sridhar, and H Vincent Poor. On distributed stochastic gra-
dient algorithms for global optimization. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8594–8598.
IEEE, 2020.

[ULGN17] César A Uribe, Soomin Lee, Alexander Gasnikov, and Angelia Nedić. Optimal algo-
rithms for distributed optimization. arXiv preprint arXiv:1712.00232, 2017.

[Vil09] Cédric Villani. Optimal Transport: Old and New. Springer, Berlin, 2009.

[WMSS95] William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Can-
cer Wisconsin (Diagnostic). UCI Machine Learning Repository, 1995. DOI:
https://doi.org/10.24432/C5DW2B.

[WT11] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 681–688, 2011.

[WY20] Hao Wang and Dit-Yan Yeung. A survey on Bayesian deep learning. ACM Computing
Surveys, 52(5):1–37, 2020.

[XCZG18] Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of Langevin
dynamics based algorithms for nonconvex optimization. In Advances in Neural Infor-
mation Processing Systems, pages 3122–3133, 2018.

[YLY16] Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient
descent. SIAM Journal on Optimization, 26(3):1835–1854, 2016.

[ZADS23] Ying Zhang, Ömer Deniz Akyildiz, Theodoros Damoulas, and Sotirios Sabanis.
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local con-
ditions in nonconvex optimization. Applied Mathematics & Optimization, 87:25, 2023.

[ZXG18] Difan Zou, Pan Xu, and Quanquan Gu. Subsampled stochastic variance-reduced gra-
dient Langevin dynamics. In 34th Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018, 2018.

35

A Proofs of the Key Technical Results

A.1 Proof of Theorem 13

By substituting the upper bound for ∥ṽ∥δ,K2 to the upper bound for ∥x̃∥δ,K2 in (6.29), we get

∥x̃∥δ,K2 ≤ ηγ1

(
(h/η)γ2 ∥x̃∥δ,K2 + (h/η)

w2(ησ
2 + 2d)

Nδ2K−2

+δ2(h/η)(E3/η)E
[∥∥∥e(0)x

∥∥∥2]+ δ2(E4/h)E
[∥∥∥ṽ(0)∥∥∥2])

+ η
w1(ησ

2 + 2d)

Nδ2K−2
+ δ2E1E

[∥∥∥x̃(0)∥∥∥2]+ δ2E2E
[∥∥∥e(0)x

∥∥∥2] . (A.1)

Under the assumption h < 1
γ1γ2

, where h is defined in (3.9), we have hγ1γ2 < 1 and the constants
γ1, γ2 are constants independent of η and δ in (6.30). We can compute that

∥x̃∥δ,K2 ≤ 1

1− hγ1γ2

{
η2 · (w2γ1(h/η) + w1)σ

2

Nδ2K−2
+ η ·

[
2d (w2γ1(h/η) + w1)

Nδ2K−2

+γ1δ
2

(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])]

+ δ2
(
E1E

[∥∥∥x̃(0)∥∥∥2]+ E2E
[∥∥∥e(0)x

∥∥∥2])}

:=
η2

δ2K−2
· (w2γ1(h/η) + w1)σ

2/N

1− hγ1γ2
+

η

δ2K−2
·

[
2d (w2γ1(h/η) + w1) /N

1− hγ1γ2

+
γ1

1− hγ1γ2
δ2K

(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])]+ δ2D0,

(A.2)

with D0 :=
1

1−hγ1γ2

(
E1E

[∥∥x̃(0)∥∥2]+ E2E
[∥∥∥e(0)x

∥∥∥2]).
Finally, by Lemma 12 (or equivalently (6.29)) for the bound of ∥ṽ∥δ,K2 and the bound of ∥x̃∥δ,K2

36

in (A.2), we get

∥ṽ∥δ,K2 ≤ (h/η)γ2 ∥x̃∥δ,K2 + (h/η)
w2(ησ

2 + 2d)

Nδ2K−2
+ δ2(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ δ2

h
E4E

[∥∥∥ṽ(0)∥∥∥2]
≤ (h/η)γ2

[
η2

δ2K−2
· (w2γ1(h/η) + w1)σ

2/N

1− hγ1γ2
+

η

δ2K−2
·

[
2d (w2γ1(h/η) + w1) /N

1− hγ1γ2

+
γ1

1− hγ1γ2
δ2K

(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])]+ δ2D0

]

+ (h/η)
w2(ησ

2 + 2d)

Nδ2K−2
+ δ2(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ δ2(E4/h)E
[∥∥∥ṽ(0)∥∥∥2]

=
hη

δ2K−2
· γ2 (w2γ1(h/η) + w1)σ

2/N

1− hγ1γ2
+

h

δ2K−2
·

[
2γ2d (w2γ1(h/η) + w1) /N

1− hγ1γ2
+

w2σ
2

N

+
γ1γ2

1− hγ1γ2
δ2K

(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])]+ (h/η)δ2γ2D0

+ (h/η)
2dw2

Nδ2K−2
+ δ2(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ δ2(E4/h)E
[∥∥∥ṽ(0)∥∥∥2] . (A.3)

The proof is complete.

A.2 Proof of Corollary 16

By (3.21), we can compute that

x(k+1) =
(
W̃ k+1 ⊗ Id

)
x(0) − η

k∑
s=0

(
W̃ k−s ⊗ Id

)(
∇F

(
x(s)
)
+ v(s)

)
− ηξ(k) +

√
2ηw(k+1)

− η

k∑
s=0

(
W̃ k−s ⊗ Id

)
ξ(s+1) +

√
2η

k∑
s=0

(
W̃ k−s ⊗ Id

)
w(s+1). (A.4)

37

Then, by using the definition of x(k) in (6.11), we can compute that

x(k+1) − x(k+1) = x(k+1) − 1

N

((
1N1TN

)
⊗ Id

)
x(k+1) (A.5)

=
(
W̃ k+1 ⊗ Id

)
x(0) − 1

N

((
1N1TNW̃ k+1

)
⊗ Id

)
x(0)

− η
k∑

s=0

(
W̃ k−s ⊗ Id

)(
∇F

(
x(s)
)
+ v(s)

)
+ η

k∑
s=0

1

N

((
1N1TNW̃ k−s

)
⊗ Id

)(
∇F

(
x(s)
)
+ v(s)

)
− η

k∑
s=0

(
W̃ k−s ⊗ Id

)
ξ(s+1) + η

k∑
s=0

1

N

((
1N1TNW̃ k−s

)
⊗ Id

)
ξ(s+1)

+
√

2η

k∑
s=0

(
W̃ k−s ⊗ Id

)
w(s+1) −

√
2η

k∑
s=0

1

N

((
1N1TNW̃ k−s

)
⊗ Id

)
w(s+1).

(A.6)

It follows that∥∥∥∥x(k+1) − 1

N

((
1N1TN

)
⊗ Id

)
x(k+1)

∥∥∥∥2 ≤ 4

∥∥∥∥((W̃ k+1 − 1

N
1N1TN

)
⊗ Id

)
x(0)

∥∥∥∥2
+ 4η2

∥∥∥∥∥
k∑

s=0

((
W̃ k−s − 1

N
1N1TN

)
⊗ Id

)(
∇F

(
x(s)
)
+ v(s)

)∥∥∥∥∥
2

+ 4η2

∥∥∥∥∥
k∑

s=0

((
W̃ k−s − 1

N
1N1TN

)
⊗ Id

)
ξ(s+1)

∥∥∥∥∥
2

+ 8η

∥∥∥∥∥
k∑

s=0

((
W̃ k−s − 1

N
1N1TN

)
⊗ Id

)
w(s+1)

∥∥∥∥∥
2

,

(A.7)

where we can further compute

4

∥∥∥∥((W̃ k+1 − 1

N
1N1TN

)
⊗ Id

)
x(0)

∥∥∥∥2 ≤ 4

∥∥∥∥((W̃ k+1 − 1

N
1N1TN

)
⊗ Id

)∥∥∥∥2 E [∥∥∥x(0)∥∥∥2]
≤ 4γ2k+2

W̃
E
[∥∥∥x(0)∥∥∥2] . (A.8)

38

Then, it follows that

4η2

∥∥∥∥∥
k∑

s=0

((
W̃ k−s − 1

N
1N1TN

)
⊗ Id

)(
∇F

(
x(s)
)
+ v(s)

)∥∥∥∥∥
2

≤ 4η2

(
k∑

s=0

∥∥∥∥W̃ k−s − 1

N
1N1TN

∥∥∥∥ · ∥∥∥∇F
(
x(s)
)
+ v(s)

∥∥∥)2

= 4η2

(
k∑

s=0

γk−s
W̃

·
(∥∥∥∇F

(
x(s)
)∥∥∥+ ∥∥∥v(s)∥∥∥))2

= 4η2

(
k∑

s=0

γk−s
W̃

)2(∑k
s=0 γ

k−s
W̃

·
(∥∥∇F

(
x(s)
)∥∥+ ∥∥v(s)∥∥)∑k

s=0 γ
k−s
W̃

)2

≤ 8η2

(
k∑

s=0

γk−s
W̃

)2 k∑
s=0

γk−s
W̃∑k

s=0 γ
k−s
W̃

(∥∥∥∇F
(
x(s)
)∥∥∥2 + ∥∥∥v(s)∥∥∥2) . (A.9)

Therefore, we can obtain from Lemma 14 that

4η2E

∥∥∥∥∥
k∑

s=0

((
W̃ k−s − 1

N
1N1TN

)
⊗ Id

)(
∇F

(
x(s)
)
+ v(s)

)∥∥∥∥∥
2
 ≤ 8η2 ·

Rh +R′
h

(1− γ
W̃
)2
. (A.10)

Finally, we can also compute that:

4η2E

∥∥∥∥∥
k∑

s=0

((
W̃ k−s − 1

N
1N1TN

)
⊗ Id

)
ξ(s+1)

∥∥∥∥∥
2


+ 8ηE

∥∥∥∥∥
k∑

s=0

((
W̃ k−s − 1

N
1N1TN

)
⊗ Id

)
w(s+1)

∥∥∥∥∥
2


≤ 4η2
k∑

s=0

γ
2(k−s)
W̃

E
∥∥∥ξ(s+1)

∥∥∥2 + 8η
k∑

s=0

γ
2(k−s)
W̃

E
∥∥∥w(s+1)

∥∥∥2
≤ 4η2σ2N

k∑
s=0

γ
2(k−s)
W̃

+ 8ηdN

k∑
s=0

γ
2(k−s)
W̃

≤ 4η2σ2N

1− γ2
W̃

+
8ηdN

1− γ2
W̃

. (A.11)

As a result, for every k = 1, 2, 3, . . ., we have

E

[∥∥∥∥x(k) − 1

N

((
1N1TN

)
⊗ Id

)
x(k)

∥∥∥∥2
]
≤ 4 (γ

W̃
)2k E

[∥∥∥x(0)∥∥∥2]+ 8η2
Rh +R′

h

(1− γ
W̃
)2

+
4η2σ2N

1− γ2
W̃

+
8ηdN

1− γ2
W̃

.

(A.12)

The proof is complete.

39

A.3 Proof of Corollary 17

For any given k ≥ 1, we can compute that

E
[∥∥∥Êk+1

∥∥∥2] = E

∥∥∥∥∥ 1

N

(
N∑
i=1

∇fi

(
x(k)

)
−∇fi

(
x
(k)
i

))∥∥∥∥∥
2


≤ 1

N2
NL2

N∑
i=1

E
[∥∥∥x(k)i − x(k)

∥∥∥2]
=

L2

N

(
4 (γ

W̃
)2k E

[∥∥∥x(0)∥∥∥2]+ 8η2 ·
Rh +R′

h

(1− γ
W̃
)2

+
4η2σ2N

1− γ2
W̃

+
8ηdN

1− γ2
W̃

)
=

4L2 (γ
W̃
)2k

N
E
[∥∥∥x(0)∥∥∥2]+ η2 · 4L

2

N

(
2 (Rh +R′

h)

(1− γ
W̃
)2

+
σ2N

1− γ2
W̃

)
+ η · 8L2d

1− γ2
W̃

, (A.13)

where the last equality is due to Corollary 16. Next, we recall the dynamics:

x(k+1) − xk+1 = x(k) − xk −
η

N

(
∇f

(
x(k)

)
−∇f (xk)

)
+ ηÊk+1 − ηξ

(k)
. (A.14)

Under the assumption η < 2/L and L-smoothness and the µ-convexity of 1
N f , we can compute that∥∥∥x(k+1) − xk+1

∥∥∥2 ≤ (1− 2ηµ

(
1− ηL

2

))∥∥∥x(k) − xk

∥∥∥2 + η2
∥∥∥Êk+1 − ξ

(k)
∥∥∥2

+ 2

〈
x(k) − xk − η

1

N

(
∇f

(
x(k)

)
−∇f (xk)

)
, ηÊk+1 − ηξ

(k)
〉
. (A.15)

40

Next, we take expectations in (A.15) to get

E
[∥∥∥x(k+1) − xk+1

∥∥∥2]
≤
(
1− 2ηµ

(
1− ηL

2

))
E
[∥∥∥x(k) − xk

∥∥∥2]+ η2E
[∥∥∥Êk+1

∥∥∥2]+ η2E
[∥∥∥ξ(k)∥∥∥2]

+ 2E
〈
x(k) − xk − η

1

N

[
∇f

(
x(k)

)
−∇f (xk)

]
, ηÊk+1

〉
≤
(
1− 2ηµ

(
1− ηL

2

))
E
[∥∥∥x(k) − xk

∥∥∥2]+ η2E
[∥∥∥Êk+1

∥∥∥2]+ η2E
[∥∥∥ξ(k)∥∥∥2]

+ 2E
[(∥∥∥x(k) − xk

∥∥∥+ η
1

N

∥∥∥∇f
(
x(k)

)
−∇f (xk)

∥∥∥) · η
∥∥∥Êk+1

∥∥∥]
≤
(
1− 2ηµ

(
1− ηL

2

))
E
[∥∥∥x(k) − xk

∥∥∥2]+ η2E
[∥∥∥Êk+1

∥∥∥2]+ η2E
[∥∥∥ξ(k)∥∥∥2]

+ 2

(
1 + η

L

N

)
ηE
[∥∥∥x(k) − xk

∥∥∥ · ∥∥∥Êk+1

∥∥∥]
≤
(
1− 2ηµ

(
1− ηL

2

))
E
[∥∥∥x(k) − xk

∥∥∥2]+ η2E
[∥∥∥Êk+1

∥∥∥2]+ η2E
[∥∥∥ξ(k)∥∥∥2]

+ 2 (1 + ηL) ηE
[∥∥∥x(k) − xk

∥∥∥ · ∥∥∥Êk+1

∥∥∥]
≤
(
1− ηµ

(
1− ηL

2

))
E
[∥∥∥x(k) − xk

∥∥∥2]+ η

η +
(1 + ηL)2

µ
(
1− ηL

2

)
E

[∥∥∥Êk+1

∥∥∥2]+ η2
σ2

N
, (A.16)

where we used the inequality 2xy ≤ c′x2+ y2

c′ for any c′ > 0 and x, y ∈ R where we took c′ =
µ(1− ηL

2)
1+ηL ,

and also the fact that since η < 2/L, we have η2L2 < ηµ so that ηµ
(
1− ηL

2

)
∈ (0, 1). Now by

using the bound in (A.13), we get

E
[∥∥∥x(k+1) − xk+1

∥∥∥2]

≤
(
1− ηµ

(
1− ηL

2

))
E
[∥∥∥x(k) − xk

∥∥∥2]+ η2

1 +
(1 + ηL)2

ηµ
(
1− ηL

2

)
E

[∥∥∥Êk+1

∥∥∥2]+ η2
σ2

N

=

(
1− ηµ

(
1− ηL

2

))
E
[∥∥∥x(k) − xk

∥∥∥2]

+ η

η +
(1 + ηL)2

µ
(
1− ηL

2

)
[4L2 (γ

W̃
)2k

N
E
[∥∥∥x(0)∥∥∥2]+ η2 · 4L

2

N

(
2 (Rh +R′

h)

(1− γ
W̃
)2

+
σ2N

1− γ2
W̃

)

+ η · 8L2d

1− γ2
W̃

]
+ η2

σ2

N
. (A.17)

41

Since x(0) = x0, we finally get

E
[∥∥∥x(k) − xk

∥∥∥2]
≤

k−1∑
i=0

(
1− ηµ

(
1− ηL

2

))i

·

η

η +
(1 + ηL)2

µ
(
1− ηL

2

)
(η2 · 4L2

N

(
2 (Rh +R′

h)

(1− γ
W̃
)2

+
σ2N

1− γ2
W̃

)
+ η · 8L2d

1− γ2
W̃

)
+ η2

σ2

N


+

k−1∑
i=0

(
1− ηµ

(
1− ηL

2

))i

η

η +
(1 + ηL)2

µ
(
1− ηL

2

)
 4L2 (γ

W̃
)2(k−i)

N
E
[∥∥∥x(0)∥∥∥2]

=
1−

(
1− ηµ

(
1− ηL

2

))k
1−

(
1− ηµ

(
1− ηL

2

))
·

η

η +
(1 + ηL)2

µ
(
1− ηL

2

)
(η2 · 4L2

N

(
2 (Rh +R′

h)

(1− γ
W̃
)2

+
σ2N

1− γ2
W̃

)
+ η · 8L2d

1− γ2
W̃

)
+ η2

σ2

N



+
γ2k

W̃
−
(
1− ηµ

(
1− ηL

2

))k
1−

(
1− ηµ

(
1− ηL

2

))
(γ

W̃
)−2

4L2

N
E
∥∥∥x(0)∥∥∥2

≤
η

(
η + (1+ηL)2

µ(1− ηL
2)

)(
η2 · 4L2

N

(
2(Rh+R′

h)
(1−γW̃)2

+ σ2N
1−γ2

W̃

)
+ η · 8L2d

1−γ2
W̃

)
+ η2 σ

2

N

ηµ
(
1− ηL

2

)
+

γ2k
W̃

−
(
1− ηµ

(
1− ηL

2

))k
(γ

W̃
)2 − 1 + ηµ

(
1− ηL

2

) 4L2(γ
W̃
)2

N
E
∥∥∥x(0)∥∥∥2 . (A.18)

The proof is complete.

42

B Proofs of Technical Lemmas

B.1 Proof of Lemma 6

We can compute that

max
k=0,...,K−1

E

[(
1

δk+1

∥∥∥a(k+1)
∥∥∥)2

]

=
1

δ2
max

k=0,...,K−1
E

[(
1

δk

∥∥∥a(k+1)
∥∥∥)2

]

≤ c1
δ2

max
k=0,...,K−1

E

[(
1

δk

∥∥∥a(k)∥∥∥)2
]
+

c2
δ2

max
k=0,...,K−1

E

[(
1

δk

∥∥∥b(k)∥∥∥)2
]
+

c0
δ2K

(B.1)

=
c1
δ2

∥a∥δ,K2 +
c2
δ2

∥b∥δ,K2 +
c0
δ2K

,

where we used the simple inequality for maximum, that is, maxk(xk + yk) ≤ maxk(xk) +maxk(yk)
for any real sequences (xk), (yk) to get (B.1) by using (6.6). Therefore, for any δ ∈ (0, 1), we have

max
k=0,...,K

E
[
1

δk

∥∥∥a(k)∥∥∥2] = max
k=−1,...,K−1

E
[

1

δk+1

∥∥∥a(k+1)
∥∥∥2]

≤ max
k=0,...,K−1

E
[

1

δk+1

∥∥∥a(k+1)
∥∥∥2]+ E

[∥∥∥a(0)∥∥∥2]
≤ c1

δ2
∥a∥δ,K2 +

c2
δ2

∥b∥δ,K2 +
c0
δ2K

+ E
[∥∥∥a(0)∥∥∥2] . (B.2)

The proof is complete.

B.2 Proof of Lemma 7

The proof follows from an adaption of the proof of Lemma 6 by using the assumption that

E
∥∥a(k+1)

∥∥2 is bounded by the sum of finite components and applying the inequality that maxk(x1k+
x2k + . . . + xnk

) ≤ maxk(x1k) + maxk(x2k) + . . . + maxk(xnk
) for any real sequences (xik), i =

1, 2, . . . , n.

B.3 Proof of Lemma 8

Before proving the lemma, we give a preliminary result. With the fact in (B.4), Lemma 3.1
in [SLWY15] shows first-order optimality condition of EXTRA algorithm in decentralized optimiza-

tion. Given mixing matrices W and W̃ , define U := W̃ −W by letting U1/2 := PD1/2PT ∈ RN×N .
Under Assumptions 1 and 3, then x∗ is consensual if and only if there exists q∗ = Up for some
p ∈ RNd where U := U ⊗ Id such that{

U1/2q∗ + η∇F (x∗) = 0,

U1/2x∗ = 0.
(B.3)

According to Assumption 3 and by decomposing U1/2 = PD1/2P T , we get

null
{
U1/2

}
= null

{
P T
}
= null

{
W̃ −W

}
= span{1N}, (B.4)

43

where span{1N} is the span of the vector space supported by all-one vectors
[
1TN , 1TN , . . . , 1TN

]
, and

it implies U1/2 is symmetric and 1TNU1/2 = 0.

Now we deliver the proof as the following. We have the error such that e
(k)
x = x(k) − x∗, where

x∗ =
[
xT∗ , . . . x

T
∗
]T

is consensual. Thus, we can compute that

e(k)x = x(k) − x(k) + 1N ⊗
(
x(k) − x∗

)
= x̃(k) + 1N ⊗ e(k)x , (B.5)

where x(k) is the mean of x(k) in (6.11), and we used the definition of x̃(k) in (6.13), and the

definition of e
(k)
x in (6.14) to obtain the last equality above.

Next, we notice that e
(k)
v = v(k) +∇F (x∗). By Lemma B.3, we have

v∗ =
1

η
U1/2q∗ = −∇F (x∗), (B.6)

where we have v∗ = −∇F (x∗) = (∇f1 (x∗) , . . . ,∇fN (x∗))
T , which is also consensual, and similarly,

we can compute

e(k)v = v(k) − v(k) + 1N ⊗
(
v(k) − v∗

)
= ṽ(k) + 1N ⊗ e(k)x , (B.7)

where v(k) is the mean of v(k) in (6.11) and we used the definition of ṽ(k) in (6.13), and the definition

of e
(k)
v in (6.14) to obtain the last equality in (B.7). Moreover, by (3.22), we can compute

v
(k+1)
i = v

(k)
i −

∑
j∈Ωi

Uij

(
v(k) +∇F

(
x(k)

)
− Bx(k)

)
j
−
∑
j∈Ωi

Uijξ
(k)
j +

∑
j∈Ωi

Uij

√
2

η
w

(k+1)
j . (B.8)

Then by the definition, U = W̃−W with doubly stochastic matrices W̃ ,W such that null
{
W − W̃

}
=

span{1N} under Assumption 3. Therefore, we have

v(k+1) = v(k) = · · · = v(0) = 0, (B.9)

where v(0) = 1
ηU

1/2q(0) = 0 from (3.17). Noticing 1
N

∑N
i=1∇fi (x∗) = 0 under optimality condition,

we can get from (6.14) that
e(k)v = v(k) = 0, e(k)v = ṽ(k). (B.10)

The proof is complete.

B.4 Proof of Lemma 9

From Lemma 8, v(k) = 0, such that we can compute the average iterates x(k) from (3.21) as follows

xk+1 − x∗ = x(k) − x∗ −
η

N

(
N∑
i=1

∇fi

(
x(k)

)
− E(k)

)
− ηξ

(k)
+
√
2ηw(k+1), (B.11)

where we recall that

E(k) :=

N∑
i=1

(
∇fi

(
x(k)

)
−∇fi

(
x
(k)
i

))
. (B.12)

44

Now by the optimality, we have 1T∇f(x∗) =
∑N

i=1∇fi (x∗) = 0 and e
(k)
x = 1

N

∑N
i=1

(
x
(k)
i − x∗

)
=

x(k) − x∗ ∈ Rd, we can compute

∥∥∥e(k+1)
x

∥∥∥2 = ∥∥∥∥∥e(k)x − η

N

N∑
i=1

(
∇fi

(
x(k)

)
−∇fi (x∗)

)∥∥∥∥∥
2

+
∥∥∥ η

N
E(k) − ηξ

(k)
+
√
2ηw(k+1)

∥∥∥2
+ 2

〈
e(k)x − η

N

N∑
i=1

(
∇fi

(
x(k)

)
−∇fi (x∗)

)
,
η

N
E(k) − ηξ

(k)
+
√

2ηw(k+1)

〉
.

(B.13)

Next, we compute the first term on the right hand side of (B.13) as follows∥∥∥∥∥e(k)x − η

N

N∑
i=1

(
∇fi

(
x(k)

)
−∇fi (x∗)

)∥∥∥∥∥
2

=
∥∥∥e(k)x

∥∥∥2 + η2
N∑
i=1

∥∥∥∥ 1

N

(
∇fi

(
x(k)

)
−∇fi (x∗)

)∥∥∥∥2

− 2η

〈
e(k)x ,

1

N

N∑
i=1

(
∇fi

(
x(k)

)
−∇fi (x∗)

)〉

≤
∥∥∥e(k)x

∥∥∥2 − (2η − η2L
)〈

e(k)x ,
1

N

N∑
i=1

(
∇fi

(
x(k)

)
−∇fi (x∗)

)〉

≤
(
1− 2ηµ

(
1− ηL

2

))∥∥∥e(k)x

∥∥∥2 , (B.14)

where we used the condition η < 2/L, and used the assumption on L-smoothness of fi to obtain the
first term in the inequality of the second line above, and the assumption on µ-strongly convexity
of fi to get the inequality of the last line.

By taking the expectations in (B.13), since ξ
(k)

and w(k) have mean zero conditional on the

45

natural filtration, and they are independent to E(k), we can compute that

E
[∥∥∥e(k+1)

x

∥∥∥2]
≤
(
1− 2ηµ

(
1− ηL

2

))
E
[∥∥∥e(k)x

∥∥∥2]+ η2

N2
E
[∥∥∥E(k)

∥∥∥2]+ η2E
[∥∥∥ξ(k)∥∥∥2]+ 2ηE

[∥∥∥w(k+1)
∥∥∥2]

+
2η

N
E
〈
e(k)x , E(k)

〉
+

2η2

N2
E

〈
N∑
i=1

(
∇fi (x∗)−∇fi

(
x(k)

))
, E(k)

〉

≤
(
1− 2ηµ

(
1− ηL

2

))
E
[∥∥∥e(k)x

∥∥∥2]+ η2

N2
E
[∥∥∥E(k)

∥∥∥2]+ η2
σ2

N
+ 2η

d

N

+
2η

N
E
[∥∥∥e(k)x

∥∥∥ · ∥∥∥E(k)
∥∥∥]+ 2η2

N2
E

[∥∥∥∥∥
N∑
i=1

(
∇fi (x∗)−∇fi

(
x(k)

))∥∥∥∥∥ · ∥∥∥E(k)
∥∥∥] (B.15)

≤
(
1− 2ηµ

(
1− ηL

2

))
E
[∥∥∥e(k)x

∥∥∥2]+ η2

N2
E
[∥∥∥E(k)

∥∥∥2]+ η2
σ2

N
+ 2η

d

N

+
2η

N
(1 + ηL)E

[∥∥∥e(k)x

∥∥∥ · ∥∥∥E(k)
∥∥∥]

≤
(
1− ηµ

(
1− ηL

2

))
E
[∥∥∥e(k)x

∥∥∥2]+ η

N

 η

N
+

1 + ηL

Nµ
(
1− ηL

2

)
E

[∥∥∥E(k)
∥∥∥2]+ η2

σ2

N
+ 2η

d

N
,

(B.16)

where we used 1−ηµ
(
1− ηL

2

)
∈ (0, 1). Note that we used Cauchy-Schwarz inequality to get (B.15)

and used the inequality 2xy ≤ x2

c′ + c′y2 for c > 0 to get (B.16) by taking c′ = ηµ
(
1− ηL

2

)
.

Moreover, we can compute from (B.12) to get

η

N

∥∥∥E(k)
∥∥∥2 ≤ η

N

N∑
i=1

∥∥∥∇fi

(
x(k)

)
−∇fi

(
x
(k)
i

)∥∥∥2 ≤ ηL2

N

∥∥∥x̃(k)∥∥∥2 , (B.17)

where we used
∑N

i=1

∥∥∥x(k) − x
(k)
i

∥∥∥2 =∑N
i=1

∥∥∥x̃(k)i

∥∥∥2 = ∥x̃∥2. Hence, we get

E
[∥∥∥e(k+1)

x

∥∥∥2] ≤ (1− ηµ

(
1− ηL

2

))
E
[∥∥∥e(k)x

∥∥∥2]

+
ηL2

N

 η

N
+

1 + ηL

Nµ
(
1− ηL

2

)
E

[∥∥∥x̃(k)∥∥∥2]+ η2
σ2

N
+ 2η

d

N
. (B.18)

By Lemma 6, we get

∥ex∥δ,K2 ≤ 1

δ2

(
1− ηµ

(
1− ηL

2

))
∥ex∥δ,K2

+
ηL2

δ2N

 η

N
+

1 + ηL

Nµ
(
1− ηL

2

)
 ∥x̃∥δ,K2 +

η

Nδ2K
(
ησ2 + 2d

)
+ E

[∥∥∥e(0)x

∥∥∥2] . (B.19)

46

By taking δ ∈
(√

1− ηµ
(
1− ηL

2

)
, 1

)
, we can compute from (B.19), it follows

(
δ2 + ηµ

(
1− ηL

2

)
− 1

)
∥ex∥δ,K2

≤ ηL2

N

 η

N
+

1 + ηL

Nµ
(
1− ηL

2

)
 ∥x̃∥δ,K2 +

η
(
ησ2 + 2d

)
Nδ2K−2

+ δ2E
[∥∥∥e(0)x

∥∥∥2] . (B.20)

Therefore, we conclude that for every K ≥ 0,

∥ex∥δ,K2 ≤ η · L2

N2
(
δ2 + ηµ

(
1− ηL

2

)
− 1
)
η +

1 + ηL

µ
(
1− ηL

2

)
 ∥x̃∥δ,K2

+
η

Nδ2K−2
· ησ2 + 2d

δ2 + ηµ
(
1− ηL

2

)
− 1

+
δ2

δ2 + ηµ
(
1− ηL

2

)
− 1

E
[∥∥∥e(0)x

∥∥∥2] . (B.21)

This completes the proof.

B.5 Proof of Lemma 10

Following (3.21), we can compute that

x(k+1)−x∗ = W̃x(k)−x∗−η
(
∇F

(
x(k)

)
+ v(k) +∇F (x∗)−∇F (x∗)

)
−ηξ(k)+

√
2ηw(k+1). (B.22)

Next, by using W̃x∗ = x∗ and (6.16) in Lemma 8, we get

e(k+1)
x = W̃e(k)x − η

(
∇F

(
x(k)

)
−∇F (x∗)

)
− ηṽ(k) − ηξ(k) +

√
2ηw(k+1). (B.23)

Moreover, we use the definition of e
(k)
x in (6.15) from Lemma 8 and J = J ⊗ Id with J = 1

N 1N1TN
to get

x̃(k) = e(k)x − 1N ⊗ e(k)x = [(IN − J)⊗ Id] e
(k)
x , (B.24)

where the component on (i, j)-position of [(IN − J)⊗ Id] e
(k)
x is [e

(k)
x]ij − 1

N

∑N
i=1[e

(k)
x]ij for i =

1, . . . , N . Hence, we obtained the last equality in (B.24) which can be re-written as:

x̃(k) = (INd − J) e(k)x . (B.25)

Next, by multiplying (INd − J) on both hand sides of (B.23), we get

x̃(k+1) = (INd − J) W̃x̃(k) − η (INd − J)
(
∇F

(
x(k)

)
−∇F (x∗)

)
− η (INd − J) ṽ(k) − η (INd − J) ξ(k) +

√
2η (INd − J)w(k+1)

=
(
W̃ − J

)
x̃(k) − η (INd − J)

(
∇F

(
x(k)

)
−∇F (x∗)

)
− ηṽ(k) − η

(
ξ(k) − ξ

(k)
)
+
√

2η
(
w(k+1) − w(k+1)

)
, (B.26)

47

where we used (IN − J)W = W − JW = W − J and J ṽ(k) = J e
(k)
v = e

(k)
v ⊗ 1TN = 0 in Lemma 8

to get the last equality. In the following, we can compute that∥∥∥x̃(k+1)
∥∥∥2 = ∥∥∥(W̃ − J

)
x̃(k) − η (INd − J)

(
∇F

(
x(k)

)
−∇F (x∗)

)∥∥∥2
+ 2

〈(
W̃ − J

)
x̃(k) − η (INd − J)

(
∇F

(
x(k)

)
−∇F (x∗)

)
,

− ηṽ(k) − η
(
ξ(k) − ξ

(k)
)
+
√

2η
(
w(k+1) − w(k+1)

)〉
+
∥∥∥−ηṽ(k) − η

(
ξ(k) − ξ

(k)
)
+
√

2η
(
w(k+1) − w(k+1)

)∥∥∥2 . (B.27)

By the fact that J = J ⊗ Id, we have λmax(J) = 1/N and λmin(J) = 0. We can further compute∥∥∥(INd − J)
(
∇F

(
x(k)

)
−∇F (x∗)

)∥∥∥2 ≤ ∥∥∥∇F
(
x(k)

)
−∇F (x∗)

∥∥∥2 , (B.28)

where we used λ2
max(IN −J) = (1−λmin(J))

2 since λ(IN −A) = 1−λ(A) for any N ×N matrix A.
Next, we can compute the first term in (B.27) as below.∥∥∥(W̃ − J

)
x̃(k) − η (INd − J)

(
∇F

(
x(k)

)
−∇F (x∗)

)∥∥∥2
=
∣∣λW̃

2

∣∣2 ∥∥∥x̃(k)∥∥∥2 + η2
∥∥∥(INd − J)

(
∇F

(
x(k)

)
−∇F (x∗)

)∥∥∥2 (B.29)

− 2η
〈(

W̃ − J
)
x̃(k) , (INd − J)

(
∇F

(
x(k)

)
−∇F (x∗)

)〉
≤
∣∣λW̃

2

∣∣2 ∥∥∥x̃(k)∥∥∥2 + η2
∥∥∥∇F

(
x(k)

)
−∇F (x∗)

∥∥∥2 − 2η
〈
e(k)x , ∇F

(
x(k)

)
−∇F (x∗)

〉
− 2η

〈((
W̃ − J

)
(INd − J)2 − INd

)
e(k)x , ∇F

(
x(k)

)
−∇F (x∗)

〉
≤
∣∣λW̃

2

∣∣2 ∥∥∥x̃(k)∥∥∥2 + η2
∥∥∥∇F

(
x(k)

)
−∇F (x∗)

∥∥∥2 − 2η
〈
e(k)x , ∇F

(
x(k)

)
−∇F (x∗)

〉
+ η

(
1

L

∥∥∥∇F
(
x(k)

)
−∇F (x∗)

∥∥∥2 + L
∥∥∥e(k)x

∥∥∥2) (B.30)

=
∣∣λW̃

2

∣∣2 ∥∥∥x̃(k)∥∥∥2 + (η2 + η

L

)∥∥∥∇F
(
x(k)

)
−∇F (x∗)

∥∥∥2
− 2η

〈
e(k)x , ∇F

(
x(k)

)
−∇F (x∗)

〉
+ ηL

∥∥∥e(k)x

∥∥∥2
≤
∣∣λW̃

2

∣∣2 ∥∥∥x̃(k)∥∥∥2 − (η − η2L
) 〈

e(k)x , ∇F
(
x(k)

)
−∇F (x∗)

〉
+ ηL

∥∥∥e(k)x

∥∥∥2 (B.31)

≤
∣∣λW̃

2

∣∣2 ∥∥∥x̃(k)∥∥∥2 − (η − η2L
)
µ
∥∥∥e(k)x

∥∥∥2 + ηL
∥∥∥e(k)x

∥∥∥2 (B.32)

=
∣∣λW̃

2

∣∣2 ∥∥∥x̃(k)∥∥∥2 + ηµ (ηL+ (L/µ)− 1)
∥∥∥e(k)x

∥∥∥2
=
(∣∣λW̃

2

∣∣2 + ηµ (ηL+ (L/µ)− 1)
)∥∥∥x̃(k)∥∥∥2 + ηµ (ηL+ (L/µ)− 1)

∥∥∥e(k)x

∥∥∥2 , (B.33)

where we used the inequality that∥∥∥((W̃ − J
)
⊗ Id

)
x̃(k)

∥∥∥2 ≤ ∥∥∥W̃ − J
∥∥∥2 ∥∥∥x̃(k)∥∥∥2 ≤ ∣∣λW̃

2

∣∣2 ∥∥∥x̃(k)∥∥∥2 ,
48

where 1 = λW̃

1 > λW̃

2 ≥ . . . ≥ λW̃

N > 0 to get (B.29). To get (B.30), we used matrix property of J ,
J = 1

N 1N1TN is symmetric and (1N1TN)A = A(1N1TN), so that (IN − J)TA = A(IN − J). We notice

(W̃ − J)J = J , and thus(
W̃ − J

)
(IN − J)2 =

(
W̃ − 2J

)
(IN − J) = W̃ − J,

where we used the fact that J2 = J . Moreover, we can also compute∥∥∥((W̃ − J − IN

)
⊗ Id

)
e(k)x

∥∥∥2 ≤ ∥∥∥W̃ − IN − J
∥∥∥2 ∥∥∥e(k)x

∥∥∥2 ≤ ∥∥∥e(k)x

∥∥∥2 ,
where we have λ(W̃ − IN) = λ(W̃) − 1 ∈ (−1, 0], and since J = 1

N 1TN1N , we can decompose

W̃ − IN − J and W̃ − IN in the same eigenspace, so that they have the same non-zero eigenvalues,
and the largest eigenvalue λmax(W̃ − IN −J) = 1 corresponds to eigenvector 1TN . Hence, we obtain

− 2η
〈((

W̃ − J
)
(INd − J)2 − INd

)
e(k)x , ∇F

(
x(k)

)
−∇F (x∗)

〉
≤ 2η

∥∥∥((W̃ − J
)
(INd − J)2 − INd

)
e(k)x

∥∥∥ · ∥∥∥∇F
(
x(k)

)
−∇F (x∗)

∥∥∥
= 2η

∥∥∥(W̃ − J − INd

)
e(k)x

∥∥∥ · ∥∥∥∇F
(
x(k)

)
−∇F (x∗)

∥∥∥
≤ η

(
1

L

∥∥∥∇F
(
x(k)

)
−∇F (x∗)

∥∥∥2 + L
∥∥∥e(k)x

∥∥∥2) , (B.34)

where we used Cauchy-Schwarz inequality for the inner product and the inequality 2xy ≤ cx2 + y2

c
for any x, y ∈ R by taking c = L > 0. Next, we used L-smoothness of F to get (B.31) and µ-
convexity of F to get (B.32) where we also used η ≤ 1/L. Finally, we used triangle inequality to

x̃(k) + 1N ⊗ e
(k)
x = e

(k)
x and get

∥∥∥e(k)x

∥∥∥2 ≤ ∥∥x̃(k)∥∥2 + ∥∥∥e(k)x

∥∥∥2 , for (B.33).
Now by using the fact that the expectation of random noise terms and their average terms are

zero conditioning on the natural filtration to compute the expectation of the inner product term
in (B.27), we get

E
〈(

W̃ − J
)
x̃(k) − η (INd − J)

(
∇F

(
x(k)

)
−∇F (x∗)

)
, ηṽ(k)

〉
= ηE

〈
W̃x̃(k) , ṽ(k)

〉
+ η2E

〈
(INd − J)

(
∇F (x∗)−∇F

(
x(k)

))
, ṽ(k)

〉
(B.35)

≤ ηE
[∥∥∥W̃x̃(k)

∥∥∥ · ∥∥∥ṽ(k)∥∥∥]+ η2E
[∥∥∥(INd − J)

(
∇F (x∗)−∇F

(
x(k)

))∥∥∥ · ∥∥∥ṽ(k)∥∥∥]
≤ ηE

[∥∥∥x̃(k)∥∥∥ · ∥∥∥ṽ(k)∥∥∥]+ η2E
[∥∥∥∇F (x∗)−∇F

(
x(k)

)∥∥∥ · ∥∥∥ṽ(k)∥∥∥] (B.36)

≤ ηLE
∥∥∥x̃(k)∥∥∥2 + η

4L
E
[∥∥∥ṽ(k)∥∥∥2] (B.37)

+ η2LµE
[∥∥∥e(k)x

∥∥∥2]+ η2

4Lµ
E
[∥∥∥ṽ(k)∥∥∥2] (B.38)

≤ (ηL+ η2Lµ)E
∥∥∥x̃(k)∥∥∥2 + η2µLE

[∥∥∥e(k)x

∥∥∥2]+ (η

4L
+

η2

4Lµ

)
E
[∥∥∥ṽ(k)∥∥∥2] . (B.39)

49

To get (B.35), we used Cauchy-Schwarz inequality and the fact that
〈
J x̃(k) , ṽ(k)

〉
=
〈
x̃(k) , J T ṽ(k)

〉
,

where J T ṽ(k) = J ṽ(k) = 0 by Lemma 8. Recall we have the eigenvalues of W̃ are 1 = λW̃

1 > λW̃

2 ≥
· · · ≥ λW̃

N > 0 to have
∥∥∥(W̃ ⊗ Id

)
x̃(k)

∥∥∥2 ≤ ∥∥x̃(k)∥∥2, which yields (B.36). Then we used the inequality

2xy ≤ c′x2 + y2

c′ for c′ > 0 and took c′ = 2L to get (B.37). Next, we used the same inequality by
taking c′ = 2

L and using L-smoothness of F to get (B.38). Finally, we used triangle inequality to

x̃(k) + 1N ⊗ e
(k)
x = e

(k)
x and get

∥∥∥e(k)x

∥∥∥2 ≤ ∥∥x̃(k)∥∥2 + ∥∥∥e(k)x

∥∥∥2 , and choose η ≤ 1/L to obtain the last

inequality (B.39).
Accordingly, we can get the following inequality from (B.27) and (B.33),

E
[∥∥∥x̃(k+1)

∥∥∥2] ≤ (∣∣λW̃

2

∣∣2 + ηµ (3(L/µ) + 3ηL− 1)
)
E
∥∥∥x̃(k)∥∥∥2

+ ηµ (L/µ+ 3ηL− 1)E
[∥∥∥e(k)x

∥∥∥2]+ η

(
1

2L
+ η +

η

2Lµ

)
E
[∥∥∥ṽ(k)∥∥∥2]

+ η2E
[∥∥∥ξ(k) − ξ

(k)
∥∥∥2]+ 2ηE

[∥∥∥w(k+1) − w(k+1)
∥∥∥2] , (B.40)

where we can further compute

η2E
[∥∥∥ξ(k) − ξ

(k)
∥∥∥2]+ 2ηE

[∥∥∥w(k+1) − w(k+1)
∥∥∥2]

= η2E
[∥∥∥ξ(k)∥∥∥2]+ η2E

[∥∥∥ξ(k)∥∥∥2]+ 2ηE
[∥∥∥w(k+1)

∥∥∥2]+ 2ηE
[∥∥∥w(k+1)

∥∥∥2]
= η

(
N +

1

N

)(
ησ2 + 2d

)
. (B.41)

Under the assumption of the stepsize in Lemma 9, Lemma 6, in particular, Lemma 7 and the
inequality (B.40), it follows that

δ2 ∥x̃∥δ,K2 ≤
(∣∣λW̃

2

∣∣2 + ηµ (3(L/µ) + 3ηL− 1)
)
∥x̃∥δ,K2

+ ηµ (L/µ+ 3ηL− 1) ∥ex∥δ,K2 + η

(
1

2L
+ η +

η

2Lµ

)
∥ṽ∥δ,K2

+
η

δ2K−2

(
N +

1

N

)
(ησ2 + 2d) + δ2E

[∥∥∥x̃(0)∥∥∥2] . (B.42)

Next, we consider the following three scenarios.
(1). If

∣∣λW̃

2

∣∣2 < 1
2 , then for all 1 > δ2 ≥ 2

∣∣λW̃

2

∣∣2, we compute that

δ2 −
∣∣λW̃

2

∣∣2 − ηµ (3(L/µ) + 3ηL− 1) ≥
∣∣λW̃

2

∣∣2 − 3Lη − 3η2µL+ ηµ

≥
∣∣λW̃

2

∣∣2 − 3(L+ µ)η, (B.43)

where we used the assumption ηL ≤ 1 to get 3η2µL ≤ 3µη and obtain the last inequality. Thus,
by the assumption that

η ≤
∣∣λW̃

2

∣∣2
6(L+ µ)

, (B.44)

50

we obtain

δ2 −
∣∣λW̃

2

∣∣2 − ηµ (3(L/µ) + 3ηL− 1) >

∣∣λW̃

2

∣∣2
2

> 0, (B.45)

(2). If 2
3 ≥

∣∣λW̃

2

∣∣2 ≥ 1
2 , for all 1 > δ2 ≥ |λW̃

2 |
2

2
(
1−|λW̃

2 |
2
) ≥ 1

2 . We can compute that

δ2 −
∣∣λW̃

2

∣∣2 ≥ ∣∣λW̃

2

∣∣2
2
(
1− |λW̃

2 |
2
) −

∣∣λW̃

2

∣∣2 =
∣∣λW̃

2

∣∣2 (∣∣λW̃

2

∣∣2 − 1
2

)
1− |λW̃

2 |
2 > 0, (B.46)

and under the assumption that

η ≤

∣∣λW̃

2

∣∣2 (∣∣λW̃

2

∣∣2 − 1
2

)
6(L+ µ)

(
1− |λW̃

2 |
2
) , (B.47)

we can compute that

δ2 −
∣∣λW̃

2

∣∣2 − ηµ (3(L/µ) + 3ηL− 1) ≥ δ2 −
∣∣λW̃

2

∣∣2 − 3(L+ µ)η

≥

∣∣λW̃

2

∣∣2 (∣∣λW̃

2

∣∣2 − 1
2

)
1− |λW̃

2 |
2 − 3(L+ µ)η

≥

∣∣λW̃

2

∣∣2 (∣∣λW̃

2

∣∣2 − 1
2

)
2
(
1− |λW̃

2 |
2
) > 0. (B.48)

(3). If 1 >
∣∣λW̃

2

∣∣2 > 2
3 , we can easily find the quantity relation 1 >

4|λW̃
2 |

2−2

3|λW̃
2 |

2−1
> 1

2 , then for all

1 > δ2 ≥ 4|λW̃
2 |

2−2

3|λW̃
2 |

2−1
> 1

2 , we can compute that

δ2 −
∣∣λW̃

2

∣∣2 ≥ 4
∣∣λW̃

2

∣∣2 − 2

3 |λW̃

2 |
2 − 1

−
∣∣λW̃

2

∣∣2 = 5
∣∣λW̃

2

∣∣2 − 3
∣∣λW̃

2

∣∣4 − 2

3 |λW̃

2 |
2 − 1

> 0, (B.49)

where we can find 2/3, 1 are two roots for 5x − 3x2 − 2 = 0, such that 5x−3x2−1
3x−1 > 0 for any

1 > x > 2
3 which implies (B.49). Under the assumption on η such that

η ≤
5
∣∣λW̃

2

∣∣2 − 3
∣∣λW̃

2

∣∣4 − 2

6(L+ µ)
(
3 |λW̃

2 |
2 − 1

) , (B.50)

we can further compute

δ2 −
∣∣λW̃

2

∣∣2 − ηµ (3(L/µ) + 3ηL− 1) ≥ δ2 −
∣∣λW̃

2

∣∣2 − 3(L+ µ)η

≥
5
∣∣λW̃

2

∣∣2 − 3
∣∣λW̃

2

∣∣4 − 2

3 |λW̃

2 |
2 − 1

− 3(L+ µ)η

≥ 1

2
·
5
∣∣λW̃

2

∣∣2 − 3
∣∣λW̃

2

∣∣4 − 2

3 |λW̃

2 |
2 − 1

> 0. (B.51)

51

Moreover, we can find from (B.44), (B.47) and (B.50) such that

η ≤ γW̃

6(L+ µ)
, (B.52)

where we define the constant

γW̃ :=



∣∣λW̃

2

∣∣2 if 0 <
∣∣λW̃

2

∣∣2 < 1
2 ,

|λW̃
2 |

2
(
|λW̃

2 |
2− 1

2

)
1−|λW̃

2 |
2 if 1

2 ≤
∣∣λW̃

2

∣∣2 ≤ 2
3 ,

5|λW̃
2 |

2−3|λW̃
2 |

4−2

3|λW̃
2 |

2−1
if 2

3 ≤
∣∣λW̃

2

∣∣2 < 1.

(B.53)

We note that the quantities
∣∣λW̃

2

∣∣2 ,
|λW̃

2 |
2
(
|λW̃

2 |
2− 1

2

)
1−|λW̃

2 |
2 ,

5|λW̃
2 |

2−3|λW̃
2 |

4−2

3|λW̃
2 |

2−1
are positive over the regimes

0 <
∣∣λW̃

2

∣∣2 < 1
2 ,

1
2 ≤

∣∣λW̃

2

∣∣2 ≤ 2
3 and 2

3 <
∣∣λW̃

2

∣∣2 < 1, respectively. Therefore, the constant γW̃ > 0.
Thus, we can show from (B.42) that for every K ≥ 0 it holds that:

γW̃ ∥x̃∥δ,K2 ≤
(
δ2 −

∣∣λW̃

2

∣∣2 − ηµ (3(L/µ) + 3ηL− 1)
)
∥x̃∥δ,K2

≤ ηµ (L/µ+ 3ηL− 1) ∥ex∥δ,K2 + η

(
1

2L
+ η +

η

2Lµ

)
∥ṽ∥δ,K2

+
η

δ2K−2

(
N +

1

N

)
(ησ2 + 2d) + δ2E

[∥∥∥x̃(0)∥∥∥2] . (B.54)

We can obtain the desired result by dividing γW̃ on both hand sides of (B.54). The proof is complete.

B.6 Proof of Lemma 11

First of all, Lemma 9 implies that

∥ex∥δ,K2 ≤ η ·
L2

(
η + 1+ηL

µ(1− ηL
2)

)
N2
(
δ2 + ηµ

(
1− ηL

2

)
− 1
) ∥x̃∥δ,K2

+
η

Nδ2K−2
· ησ2 + 2d

δ2 + ηµ
(
1− ηL

2

)
− 1

+
δ2

δ2 + ηµ
(
1− ηL

2

)
− 1

E
[∥∥∥e(0)x

∥∥∥2]

≤
4L2

(
1 + 2+2L

µ

)
N2µ

∥x̃∥δ,K2 +
4

Nδ2K−2
· ησ

2 + 2d

µ
+

4δ2

ηµ
E
[∥∥∥e(0)x

∥∥∥2] , (B.55)

where we used the assumption that η ≤ 1/L to get 1+ηL

µ(1− ηL
2)

≤ 1+L
µ/2 in the first term, and then we

chose δ2 such that δ2 ≥ 1 − ηµ
2

(
1− ηL

2

)
to get δ2 − 1 + ηµ

(
1− ηL

2

)
≥ ηµ

2

(
1− ηL

2

)
≥ ηµ

4 where

we used η ≤ 1/L again. By substituting the upper bound of ∥ex∥δ,K2 in Lemma 9 to Lemma 10, we

52

can compute that

∥x̃∥δ,K2 ≤ η

γW̃

(L/µ+ 3ηL− 1)
4L2

(
1 + 2+2L

µ

)
N2

∥x̃∥δ,K2

+
η

γW̃

(
1

2L
+ η +

η

2Lµ

)
∥ṽ∥δ,K2 +

η

δ2K−2
(ησ2 + 2d)

(
N + 1

N

γW̃

+
4

NγW̃

· (L/µ+ 3ηL− 1)

)

+
4δ2

γW̃

(L/µ+ 3ηL− 1)E
[∥∥∥e(0)x

∥∥∥2]+ δ2

γW̃

E
[∥∥∥x̃(0)∥∥∥2] . (B.56)

Recall the definition of A in (6.23) such that

A =

(
L/µ− 1 +

γW̃

2(1 + µ/L)

)
· 4L

2

N2

(
1 +

2 + 2L

µ

)
≥ (L/µ+ 3ηL− 1) · 4L

2

N2

(
1 +

2 + 2L

µ

)
,

(B.57)

where we used η ≤ γW̃

6(L+µ) under the assumption in Lemma 10. Furthermore, by using the as-

sumption that η ≤ γW̃

2A , we can further compute 1 − ηA
γW̃

≥ 1
2 . Hence, we can compute from (B.56)

that

∥x̃∥δ,K2
2

≤
(
1− ηA

γW̃

)
∥x̃∥δ,K2

≤ η

γW̃

(
1

2L
+ η +

η

2Lµ

)
∥ṽ∥δ,K2 +

η

δ2K−2
(ησ2 + 2d)

(
N + 1

N

γW̃

+
4

NγW̃

· (L/µ+ 3ηL− 1)

)

+
4δ2

γW̃

(L/µ+ 3ηL− 1)E
[∥∥∥e(0)x

∥∥∥2]+ δ2

γW̃

E
[∥∥∥x̃(0)∥∥∥2] . (B.58)

The proof is complete by multiplying 2 on both hand sides of (B.58).

B.7 Proof of Lemma 12

Considering (3.22) and the choice of W̃ in (3.9), we can compute that

U = W̃ −W = hIN + (1− h)W −W = h (IN −W) , h ∈ (0, 1/2]. (B.59)

53

From Lemma 8 and (6.10), and under our assumption that B = B ⊗ Id with 1TNB = c, we have
UBx∗ = cUx∗ = 0, we can compute∥∥∥ṽ(k+1)

∥∥∥2 = ∥∥∥e(k+1)
v

∥∥∥2 = ∥∥∥v(k+1) +∇F (x∗)
∥∥∥2

=

∥∥∥∥∥ṽ(k) − h(INd −W)
(
ṽ(k) +∇F

(
x(k)

)
−∇F (x∗)− B

(
x(k) − x∗

))
− h(INd −W)ξ(k) + (h/η)(INd −W)

√
2ηw(k+1)

∥∥∥∥∥
2

(B.60)

=

∥∥∥∥∥ ((1− h)INd + hW) ṽ(k) −

[
h(INd −W)

(
∇F

(
x(k)

)
−∇F (x∗)

)
− h(INd −W)B

(
x(k) − x∗

)
+ h (INd −W) ξ(k) − (h/η) (INd −W)

√
2ηw(k+1)

]∥∥∥∥∥
2

=
∥∥∥((1− h)INd + hW) ṽ(k)

∥∥∥2 (B.61)

+

∥∥∥∥∥h(INd −W)
(
∇F

(
x(k)

)
−∇F (x∗)

)
− h(INd −W)B

(
x(k) − x∗

)∥∥∥∥∥
2

(B.62)

+

∥∥∥∥∥h (INd −W) ξ(k) − (h/η) (INd −W)
√
2ηw(k+1)

∥∥∥∥∥
2

+ 2

〈
h(INd −W)

(
∇F

(
x(k)

)
−∇F (x∗)

)
− h(INd −W)B

(
x(k) − x∗

)
,

h (INd −W) ξ(k) − (h/η) (INd −W)
√

2ηw(k+1)

〉

− 2

〈
((1− h)INd + h (W −J)) ṽ(k) , h(INd −W)

(
∇F

(
x(k)

)
−∇F (x∗)

)
− h(INd −W)B

(
x(k) − x∗

)〉
(B.63)

+ 2

〈
((1− h)INd + h (W −J)) ṽ(k) , h (INd −W) ξ(k) − (h/η) (INd −W)

√
2ηw(k+1)

〉
.

54

Since J ṽ(k) = J e
(k)
v = e

(k)
v ⊗ Id = 0 by Lemma 8, we compute (B.61) such that∥∥∥((1− h)INd + hW) ṽ(k)

∥∥∥2 = ∥∥∥((1− h)INd + h (W −J)) ṽ(k)
∥∥∥2

≤ ∥(1− h)IN + h (W − J)∥2 ·
∥∥∥ṽ(k)∥∥∥2

≤
(
1− 2h+ h2 + 2(1− h)hγ

W
+ h2γ2

W

) ∥∥∥ṽ(k)∥∥∥2
=
(
1− 2h (1− γ

W
) + h2 (1− γ

W
)2
)∥∥∥ṽ(k)∥∥∥2

≤ (1− h(1− γ
W
))
∥∥∥ṽ(k)∥∥∥2 , (B.64)

where we used the assumption h < 1 < 1
1−γW

in the last inequality. Then by L-smoothness of F ,

we can bound the term (B.62) as follows:∥∥∥∥∥h(INd −W)
(
∇F

(
x(k)

)
−∇F (x∗)

)
− h(INd −W)B

(
x(k) − x∗

)∥∥∥∥∥
2

≤ 2

∥∥∥∥∥h(INd −W)
(
∇F

(
x(k)

)
−∇F (x∗)

)∥∥∥∥∥
2

+ 2

∥∥∥∥∥h(INd −W)B
(
x(k) − x∗

)∥∥∥∥∥
2

≤ 2γ2IN−W

(
h2L2 + ∥hB∥2

) ∥∥∥e(k)x

∥∥∥2 . (B.65)

Next, we compute the inner product term in (B.63).

2

〈
((1− h)INd + hW) ṽ(k) , h(INd −W)B

(
x(k) − x∗

)〉

− 2

〈
((1− h)INd + hW) ṽ(k) , h(INd −W)

(
∇F

(
x(k)

)
−∇F (x∗)

)〉
≤ 2

〈
(INd −W)ṽ(k) , hB

(
x(k) − x∗

)
− h

(
∇F

(
x(k)

)
−∇F (x∗)

)〉
(B.66)

− 2

〈
h(INd −W)ṽ(k) , h(INd −W)B

(
x(k) − x∗

)〉

− 2

〈
h(INd −W)ṽ(k) , h(INd −W)

(
∇F

(
x(k)

)
−∇F (x∗)

)〉
. (B.67)

We can use the L-smoothness of F to bound the term (B.66). It follows that

2
〈
(INd −W)ṽ(k) , hB

(
x(k) − x∗

)
− h

(
∇F

(
x(k)

)
−∇F (x∗)

)〉
≤ 2

∥∥∥(INd −W)ṽ(k)
∥∥∥ · ∥∥∥hB (x(k) − x∗

)
− h

(
∇F

(
x(k)

)
−∇F (x∗)

)∥∥∥
≤ (1/c)

∥∥∥(INd −W)ṽ(k)
∥∥∥2 + c

∥∥∥hB (x(k) − x∗

)
− h

(
∇F

(
x(k)

)
−∇F (x∗)

)∥∥∥2
≤ (1/c)

∥∥∥(INd −W)ṽ(k)
∥∥∥2 + 2c

∥∥∥hB (x(k) − x∗

)∥∥∥2 + 2c
∥∥∥h(∇F

(
x(k)

)
−∇F (x∗)

)∥∥∥2
≤ (1/c)γ2IN−W

∥∥∥ṽ(k)∥∥∥2 + 2c∥hB∥2
∥∥∥e(k)x

∥∥∥2 + 2ch2L2
∥∥∥e(k)x

∥∥∥2 , (B.68)

55

where we used the inequality 2xy ≤ cx2 + y2/c for any c > 0 and x, y ∈ R. Therefore, we can
compute the inner product term (B.63) as follows.

2

〈
((1− h)INd + hW) ṽ(k) , h(INd −W)B

(
x(k) − x∗

)〉

− 2

〈
(1− h)INd + hW) ṽ(k) , h(INd −W)

(
∇F

(
x(k)

)
−∇F (x∗)

)〉
≤ (1/c)γ2IN−W

∥∥∥ṽ(k)∥∥∥2 + 2c∥hB∥2
∥∥∥e(k)x

∥∥∥2 + 2ch2L2
∥∥∥e(k)x

∥∥∥2
+ h2γ2IN−W

∥∥∥ṽ(k)∥∥∥2 + ∥hB∥2 γ2IN−W

∥∥∥e(k)x

∥∥∥2 + h2γ2IN−W

∥∥∥ṽ(k)∥∥∥2 + h2L2γ2IN−W

∥∥∥e(k)x

∥∥∥2
= (1/c)γ2IN−W

∥∥∥ṽ(k)∥∥∥2 + 2h2γ2IN−W

∥∥∥ṽ(k)∥∥∥2
+ 2ch2ηL

2
∥∥∥e(k)x

∥∥∥2 + h2L2γ2IN−W

∥∥∥e(k)x

∥∥∥2 + 2cL ∥hB∥2
∥∥∥e(k)x

∥∥∥2 + ∥hB∥2 γ2IN−W

∥∥∥e(k)x

∥∥∥2
≤ (1/c)γ2IN−W

∥∥∥ṽ(k)∥∥∥2 + 2h2γ2IN−W

∥∥∥ṽ(k)∥∥∥2 + (3ch2L2 + 3cL ∥hB∥2
)∥∥∥e(k)x

∥∥∥2 , (B.69)

where we assume that c ≥ γ2IN−W . Now we take the expectation of (B.60) to get

E
[∥∥∥ṽ(k+1)

∥∥∥2] ≤ (1− h(1− γ
W
) + (1/c)γ2IN−W + 2h2γ2IN−W

)
E
[∥∥∥ṽ(k)∥∥∥2]

+
(
3ch2L2 + 3cL ∥hB∥2

)
E
[∥∥∥e(k)x

∥∥∥2]+ 2h2σ2N + 4η(h/η)2dN.

≤
(
1− h(1− γ

W
)

2
+ (1/c)γ2IN−W

)
E
[∥∥∥ṽ(k)∥∥∥2]

+
(
3ch2L2 + 3cL ∥hB∥2

)
E
[∥∥∥e(k)x

∥∥∥2]+ 2h2σ2N + 4η(h/η)2dN, (B.70)

under the assumption such that h ≤ 1−γW

4γ2
IN−W

. By taking c =
2γIN−W

(1−γW)h where h ≤ 1 < 1
γ2
IN−W

under

our assumptions, we can compute

1− h(1− γ
W
)

2
+ (1/c)γ2IN−W = 1− h(1− γ

W
)

2
+

(1− γ
W
)h

2
γIN−W

≤ 1− h
1− γ

W

2

(
1− γIN−W

)
> 0, (B.71)

where 1− γ
W
≤ γIN−W < 1 by definition (6.25), then we can find the constant

δ2 ≥ 1− h

2

1− γ
W

2

(
1− γIN−W

)
> 0. (B.72)

Therefore, by Lemma 6, we get

h

2

1− γ
W

2

(
1− γIN−W

)
∥ṽ∥δ,K2 ≤

(
δ2 −

(
1− h

1− γ
W

2

(
1− γIN−W

)))
∥ṽ∥δ,K2 (B.73)

≤
(
3h(h/η)L2 + 3h(h/η)L ∥B∥2

)
∥ex∥δ,K2

+ h2 · 2σ
2N

δ2K−2
+ η · (h/η)2 4dN

δ2K−2
+ δ2

∥∥∥ṽ(0)∥∥∥2 .
56

Then it follows that

∥ṽ∥δ,K2 ≤
12(h/η)

(
L2 + L ∥B∥2

)
(1− γ

W
)
(
1− γ2IN−W

) ∥ex∥δ,K2 +
8N(h/η)

(1− γ
W
)
(
1− γ2IN−W

) ησ2 + 2d

δ2K−2

+
4δ2

h(1− γ
W
)
(
1− γ2IN−W

) ∥∥∥ṽ(0)∥∥∥2 , (B.74)

where we note that h/η is in the order of ηα under our assumption. Moreover, by Lemma 9, see
also (B.55), we have

∥ex∥δ,K2 ≤
4L2

(
1 + 2+2L

µ

)
N2µ

∥x̃∥δ,K2 +
4

Nδ2K−2
· ησ

2 + 2d

µ
+

4δ2

ηµ
E
[∥∥∥e(0)x

∥∥∥2] , (B.75)

Hence, by x̃(k) + 1N ⊗ e
(k)
x = e

(k)
x , we can compute that

∥ex∥δ,K2 = ∥x̃∥δ,K2 + ∥ex∥δ,K2

≤

1 +
4L2

(
1 + 2+2L

µ

)
N2µ

 ∥x̃∥δ,K2 +
4

Nµ
· ησ

2 + 2d

δ2K−2
+

4δ2

ηµ
E
[∥∥∥e(0)x

∥∥∥2] . (B.76)

Therefore, we can substitute the formula (B.76) into the upper bound of ∥ṽ∥δ,K2 in (B.74) to get

∥ṽ∥δ,K2 ≤
12(h/η)

(
L2 + L ∥B∥2

)
(1− γ

W
)
(
1− γ2IN−W

) ∥ex∥δ,K2 +
8N(h/η)

(1− γ
W
)
(
1− γ2IN−W

) ησ2 + 2d

δ2K−2

+
4δ2

h(1− γ
W
)
(
1− γ2IN−W

) ∥∥∥ṽ(0)∥∥∥2
≤

12(h/η)
(
L2 + L ∥B∥2

)
(1− γ

W
)
(
1− γ2IN−W

)
1 +

4L2
(
1 + 2+2L

µ

)
N2µ

 ∥x̃∥δ,K2

+

6
(
L2 + L ∥B∥2

)
Nµ

+N

 · 8(h/η)

(1− γ
W
)
(
1− γ2IN−W

) · ησ2 + 2d

δ2K−2

+
12δ2(h/η)

(
L2 + L ∥B∥2

)
ηµ(1− γ

W
)
(
1− γ2IN−W

) E
[∥∥∥e(0)x

∥∥∥2]+ 4δ2

h(1− γ
W
)
(
1− γ2IN−W

) ∥∥∥ṽ(0)∥∥∥2 . (B.77)

The proof is complete.

57

B.8 Proof of Lemma 14

We first use (6.13) to get the following first inequality, and then we use the uniform upper bound

for ∥ṽ∥δ,k2 from (6.41) in Theorem 13 to derive as follows.

1

δ2k
E
[∥∥∥ṽ(k)∥∥∥2]

≤ ∥ṽ∥δ,k2

≤ hη

δ2k−2
· γ2 (w2γ1(h/η) + w1)σ

2/N

1− hγ1γ2
+

h

δ2k−2
·

[
2γ2d (w2γ1(h/η) + w1) /N

1− hγ1γ2
+

w2σ
2

N

+
γ1γ2

1− hγ1γ2
δ2k
(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])]

+ (h/η)δ2
(
2dw2

Nδ2k
+ γ2D0

)
+ δ2(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2] . (B.78)

Therefore, we obtain:

E
[∥∥∥ṽ(k)∥∥∥2] ≤ hδ2 ·

(
ησ2 + 2d

)
· γ2 (w2γ1(h/η) + w1) /N

1− hγ1γ2
+ hδ2 · w2σ

2

N
+ (h/η)δ2

2dw2

N

+ δ2k+2 ·

(
hγ1γ2

1− hγ1γ2

(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])

+ (h/η)γ2D0 + (h/η)(E3/η)E
[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])

=: hδ2 · C1γ2
2L2

+ δ2k+2h · C0γ1γ2
2L2

+ δ2k+2 · ((h/η)γ2D0 + C0) + (h/η)δ2 · w2

N

(
ησ2 + 2d

)
. (B.79)

By uniform bound for ∥x̃∥δ,k2 in (6.40) in Theorem 13, we can obtain that

δ2k ∥x̃∥δ,k2 ≤ δ2η · ησ
2 + 2d

N
· w2γ1(h/η) + w1

1− hγ1γ2

+ δ2k+2η · γ1
1− hγ1γ2

(
(h/η)(E3/η)E

[∥∥∥e(0)x

∥∥∥2]+ (E4/h)E
[∥∥∥ṽ(0)∥∥∥2])+ δ2k+2D0

= δ2η · C1

2L2
+ δ2k+2η · γ1C0

2L2
+ δ2k+2D0. (B.80)

58

Then we can further get the uniform bound for E
[∥∥∇F

(
x(k)

)∥∥2] in the following derivation.

E
[∥∥∥∇F

(
x(k)

)∥∥∥2]
≤ 2E

[∥∥∥∇F
(
x(k)

)
−∇F (x∗)

∥∥∥2]+ 2 ∥∇F (x∗)∥2

≤ 2L2E
[∥∥∥x(k) − x∗

∥∥∥2]+ 2 ∥∇F (x∗)∥2

≤ 2L2δ2k
(
∥x̃∥δ,k2 + ∥ex∥δ,k2

)
+ 2 ∥∇F (x∗)∥2

≤ δ2k · 2L2

(
∥x̃∥δ,k2 + η · L2

N2
(
δ2 + ηµ

(
1− ηL

2

)
− 1
)
η +

1 + ηL

µ
(
1− ηL

2

)
 ∥x̃∥δ,k2

+
η

Nδ2k−2
· ησ2 + 2d

δ2 + ηµ
(
1− ηL

2

)
− 1

+
δ2

δ2 + ηµ
(
1− ηL

2

)
− 1

E
[∥∥∥e(0)x

∥∥∥2])+ 2 ∥∇F (x∗)∥2

= 2L2

(
δ2η · C1

2L2
+ δ2k+2η · γ1C0

2L2
+ δ2k+2D0

)
+ η ·

(
δ2η · C1C2

2L2
+ δ2k+2η · γ1C0C2

2L2
+ δ2k+2D0C2

)
+ δ2η · C3 + δ2k+2 · C4 + 2 ∥∇F (x∗)∥2

= ηδ2 (C1 + C3) + δ2η2
(
C1C2

2L2

)
+ δ2k+2η (γ1C0 +D0C2)

+ δ2k+2η2
(
γ1C0C2

2L2

)
+ δ2k+2 (D0 + C4) + 2 ∥∇F (x∗)∥2 , (B.81)

with

C2 :=
2L4

N2
(
δ2 + ηµ

(
1− ηL

2

)
− 1
)
η +

1 + ηL

µ
(
1− ηL

2

)
 , (B.82)

and

C3 :=
2L2

N
· ησ2 + 2d

δ2 + ηµ
(
1− ηL

2

)
− 1

, C4 :=
2L2

δ2 + ηµ
(
1− ηL

2

)
− 1

E
[∥∥∥e(0)x

∥∥∥2] , (B.83)

where we used the fact that x(k) −x∗ = e
(k)
x = x̃(k) +1N ⊗ e

(k)
x in Lemma 8, and the last inequality

in (B.81) follows bound in (B.80) above. The proof is complete.

59

B.9 Proof of Corollary 15

We proved in Lemma 14 such that

E
[∥∥∥ṽ(k)∥∥∥2] ≤ hδ2 · C1γ2

2L2
+ δ2k+2h · C0γ1γ2

2L2

+ δ2k+2 · ((h/η)γ2D0 + C0) + (h/η)δ2 · w2

N

(
ησ2 + 2d

)
, (B.84)

E
[∥∥∥∇F

(
x(k)

)∥∥∥2] ≤ ηδ2 (C1 + C3) + δ2η2
(
C1C2

2L2

)
+ δ2k+2η (γ1C0 +D0C2)

+ δ2k+2η2
(
γ1C0C2

2L2

)
+ δ2k+2 (D0 + C4) + 2 ∥∇F (x∗)∥2 . (B.85)

Since 0 < δ < 1, for any K0 ≥ 0 such that for every k ≥ K0 ≥ 0, it holds that

E
[∥∥∥ṽ(k)∥∥∥2] ≤ hδ2

(
C1γ2
2L2

+
C0γ1γ2
2L2

)
+ (h/η)δ2

(
γ2D0 +

w2

N

(
ησ2 + 2d

))
+ δ2K0C0,

E
[∥∥∥∇F

(
x(k)

)∥∥∥2] ≤ ηδ2 (C1 + C3 + γ1C0 +D0C2) + δ2η2
(
C1C2

2L2
+

γ1C0C2

2L2

)
+ δ2K0(D0 + C4) + 2 ∥∇F (x∗)∥2 . (B.86)

In particular, we use the inequality 1− 1
x ≤ log(x) ≤ x− 1, and choose the constant K0 as follows:

K0 :=
δ2

1− δ2

[(
1− ∥∇F (x∗)∥2

D0 + C4

)
∨

(
1− ∥∇F (x∗)∥2

C0

)]
∨ 0, (B.87)

which induces that
δ2K0C0 ∨ δ2K0(D0 + C4) ≤ ∥∇F (x∗)∥2 . (B.88)

Therefore, we can obtain the uniform bounds such that

E
[∥∥∥ṽ(k)∥∥∥2] ≤ Rh, E

[∥∥∥∇F
(
x(k)

)∥∥∥2] ≤ R′
h, (B.89)

for any k ≥ K0, where

Rh := hδ2
(
C1γ2
2L2

+
C0γ1γ2
2L2

)
+ (h/η)δ2

(
γ2D0 +

w2

N

(
ησ2 + 2d

))
+ ∥∇F (x∗)∥2 , (B.90)

R′
h := ηδ2 (C1 + C3 + γ1C0 +D0C2) + δ2η2

(
C1C2

2L2
+

γ1C0C2

2L2

)
+ 3 ∥∇F (x∗)∥2 . (B.91)

This completes the proof.

60

	Introduction
	Preliminaries and Background
	EXTRA Langevin Algorithms
	Convergence Analysis
	Comparison with DE-SGLD
	Proof of the Main Results
	Proof of Theorem 4
	Uniform L2 bounds between xi(k) and their average (k)
	L2 distance between x(k) and xk
	W2 distance between the law of xk and the Gibbs distribution
	Completing the proof of Theorem 4

	Proof of Proposition 5

	Numerical Experiments
	Network architecture
	Bayesian linear regression
	Bayesian logistic regression with synthetic data
	Bayesian logistic regression with real data

	Conclusion
	Proofs of the Key Technical Results
	Proof of Theorem 13
	Proof of Corollary 16
	Proof of Corollary 17

	Proofs of Technical Lemmas
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 14
	Proof of Corollary 15

