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HIGH-ORDER LANGEVIN MONTE CARLO ALGORITHMS

THANH DANG, MERT GURBUZBALABAN, MOHAMMAD RAFIQUL ISLAM, NIAN YAO AND
LINGJIONG ZHU

ABSTRACT. Langevin algorithms are popular Markov chain Monte Carlo (MCMC)
methods for large-scale sampling problems that often arise in data science. We propose
Monte Carlo algorithms based on the discretizations of P-th order Langevin dynamics
for any P > 3. Our design of P-th order Langevin Monte Carlo (LMC) algorithms
is by combining splitting and accurate integration methods. We obtain Wasserstein
convergence guarantees for sampling from distributions with log-concave and smooth
densities. Specifically, the mixing time of the P-th order LMC algorithm scales as

O(d%/eﬁ) for R =4-1¢p_zy + (2P — 1) - 1{p>4}, which has a better dependence on
the dimension d and the accuracy level € as P grows. Numerical experiments illustrate
the efficiency of our proposed algorithms.

1. INTRODUCTION

Langevin algorithms are popular Markov chain Monte Carlo (MCMC) methods to sample
from a given density (6) oc e=U@ of interest where # € R? and these sampling problems
appear in many applications such as Bayesian statistical inference, Bayesian formulations
of inverse problems, and Bayesian classification and regression tasks in machine learning
[GCSRY5, Stul0, ADFDJ03, TTV16, GGHZ21, GIWZ24]. The classical Langevin Monte
Carlo algorithm is based on the discretization of overdamped (or first-order) Langevin
dynamics [Dall7, DM17, DK19, RRT17, BCM*21, CMR 21, EH21, ZADS23, BCE*22]
that follows the stochastic differential equation (SDE):

do, = —=VU(6,)dt + v/2dB,, (1)

where U : R* — R is often known as the potential function, and B, is a standard d-
dimensional Brownian motion with 6, € RY. Under some mild assumptions on U(-),
the diffusion (1) admits a unique stationary distribution with the density u(6) oc e=V(®),
also known as the Gibbs distribution [CHS87, HKS89]. In computing practice, this
diffusion is simulated by considering its discretization, and one of the most commonly
used discretization schemes is the Euler-Maruyama discretization of (1), often known as
the unadjusted Langevin algorithm in the literature; see e.g. [DM17]:

Ors1 = O — VU (Ok) + /20&k+1, (2)
where & are i.i.d. N(0,1;) Gaussian vectors.

In a seminal paper, [Dall7] obtained the first non-asymptotic result of the discretized
Langevin dynamics (2); later, [DM17] improved the dependence on the dimension d. Both
works consider the total variation (TV) as the distance to measure the convergence. In
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contrast, [DM19] studied the convergence in the 2-Wasserstein distance, and [DMP1§]
studied variants of (2) when U is not smooth. [CB18] studied the convergence in the
Kullback-Leibler distance. [EHZ22| obtained the convergence in chi-squared and Rényi
divergence. [DK19, RRT17, BCM*21, CMR 21, ZADS23] studied the convergence when
only stochastic gradients are available.

In the literature, many variants of the overdamped Langevin dynamics and the discretiza-
tion schemes have been studied. One popular Langevin dynamics is the underdamped

Langevin dynamics, also known as the second-order or kinetic Langevin dynamics, see e.g.

[MSHO02, Vil09, CCBJ18, CCAT18, CLW21, CLW23, DRD20, GGZ20, MCC*21, GGZ22]:

dry = —vyridt — VU (0;)dt + /2vd By, 3)
th = Ttdt,

where B, is a standard d-dimensional Brownian motion with g, f, € R%. Under some mild
assumptions on U, the SDE (3) admits a unique stationary distribution with the density
(0, 7) o e U O=3I"* [EGZ19], whose f-marginal distribution coincides with the stationary
distribution of (1). It is known that the second-order (underdamped) Langevin dynamics
(3) might converge to the Gibbs distribution faster than the first-order (overdamped)
Langevin dynamics [EGZ19, CLW23], and the discretization based on the second-order
Langevin dynamics might have better iteration complexity, in particular, with a better
dependence on the dimension d and the accuracy level e [CCBJ18, GGZ22].

In the recent literature, higher-order, in particular, the third-order Langevin dynamics
and its discretization have been proposed and studied in [MMW*21]:

d9t = Pt dt,
dpy = =7 U(6:) dt +~r dt, (4)
dry = —~yp; dt — 2yry dt + 4% dBy,

where v > 0 is the friction parameter, L is the smoothness parameter of U and B; is a
standard Brownian motion in R?. Under some mild assumptions on U, the SDE (4) admits
a unique stationary distribution with the density (6, r) o e~UO=5IpP=5Irf? [MMW™21].
They showed that a Langevin Monte Carlo algorithm based on the discretization of the
third-order Langevin SDE (4) can have even better iteration complexity in terms of
dependence on the dimension d and the accuracy level € compared to the algorithm based

on the second-order Langevin SDE (3) [MMW*21].

It is thus very natural to ask if one can propose and study a more general P-th order
Langevin dynamics, and whether its discretization can lead to better iteration complexity.
In the very recent probability literature, a generalized Langevin dynamics is studied in
[Mon23]. Their result is in continuous time only. The focus of our paper is to propose
and study the iteration complexity of an algorithm based on the discretization of the
continuous-time P-th order Langevin dynamics, which we name P-th order Langevin
Monte Carlo (LMC) algorithm. In the context of log-concave sampling via the Langevin

equation and its variants, Table 1 compares the mixing time of our P-th order LMC
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References Assumptions on potential U Mixing time in Wasss
[CCBJ18, DRD20, MCC*21] convex-smooth 0 (dlf)
[SL19] convex-smooth O (g;i
[MMWT21] ridge-separable, convex-smooth O <g11;;1 )
di/4
INMMW21] strongly convex O\ % /2>
and smooth up to order « +0 Ef%:)
Our convex-smooth @) (d% / eﬁ> , where
Theorem and Condition H2 R =4 1{p_y
2.19 +2P = 1) - Lypzyy

TABLE 1. Summary of assumptions and iteration complexities in our paper
compared with the literature.

algorithm in Theorem 2.19 with the mixing time of other algorithms from the references
in the literature!. Also note that the convex-smooth condition is our Condition HI.

Our contributions can be summarized as follows.

e We construct P-th order LMC algorithms that are based on discretizations of
P-th order Langevin dynamics for P > 3. Under the condition that the potential
function U is convex, sufficiently smooth and the operator norm of the derivatives
of U do not grow too quickly, we show that the iteration complexity of our P-th
order LMC algorithm scales as O(d%/eﬁ) for R=4-11p_gy+ (2P —1) - L{p>ay.
Our iteration complexity result therefore has a better dependence on the dimension
d and the accuracy level € as P grows. We therefore provide a positive answer to a
conjecture in [MMW21, Section 5] that one can construct LMC algorithms based
on high-order Langevin dynamics that reduce the dependence of the iteration
complexity on the dimension and the accuracy level.

e Inspired by existing work on second- and third-order Langevin Monte Carlo algo-
rithms [CCBJ18, MMW™21], we propose and rigorously study novel discretization
schemes for high-order Langevin dynamics that contain several stages of refine-
ment, and each stage adopts a splitting scheme to ensure that the conditional
expectation of the vector formed by the variables in each stage (conditioned on
the last stage) follows a multivariate normal distribution. A natural question is
what the maximum number of refinement stages one can design, which affects how
much improvement one can obtain in iteration complexity. We discover that the
maximum number of stages is P — 1 (see Remark 2.15 and Remark 2.22).

IFor comparison purpose, we focus solely on the dependence on d and € of the rates in the cited
references in the table. These references improve other aspects of log-concave sampling which we do not
cover here.
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e We perform numerical experiments and compare the performance of the third- and
fourth-order LMC algorithms. In particular, we study sampling from the posterior
distribution of the model parameters in Bayesian regression using real data, where
the loss function is quadratic. Our numerical results show better performance for
the fourth-order LMC algorithm. In addition, we consider a sigmoid loss function
for sampling from the posterior distribution of the model parameters in Bayesian
classification problems, using real data, which demonstrates the efficiency of our
proposed algorithm.

The rest of the paper can be summarized as follows. In Section 2, main results are stated.
We first provide some preliminaries for the continuous-time P-th order Langevin dynamics
and state our main assumptions. In Section 2.1, for pedagogical purpose, we introduce
and study the fourth-order LMC algorithm, and then in Section 2.2, we extend our results
to any P-th order LMC algorithm for P > 3. We conduct numerical experiments to show
the efficiency of our algorithms in Section 3. In Section 4, we conclude. Further technical
details will be provided in the Appendix.

2. MAIN RESULTS

In this section, we first present an important result regarding convergence toward equi-
librium of (continuous-time) P-th order Langevin dynamics, that is established by Mon-
marché in [Mon23]. Let us start with some definitions.

Let P,d > 1. A P-th order Langevin dynamics has the form

dXt - A}/;jdt,
dY; = —A'VU(X;)dt — yBYdt + \/vdW;, (5)

where W is a standard (P — 1)d-dimensional Brownian motion; U € C?(R?); while the
d X (P — 1)d matrix A and the (P — 1)d x (P — 1)d matrix B are given by:

0 —I, 0 ... 0

L 0 —I, .

A=(I, 0 ... 0) and B=|g . - . g
14 0 -1

0 0 I; I

Regarding notations, set b as the drift coefficient of (5), that is

ble,y) = (—ATVU/(%) - vBy) ’ o

and denote J, as its Jacobian matrix.



Next, we set

0 -1 0 0
1 0 -1 :
\ = min{Re(\), A is an eigenvalue of By}, where Bgm:= 10 *-. . . 0 |,
1 0 -1
0 0 1 1
noting that B = By, ® I; where ® denotes the Kronecker product. Also,

~

5\, when B is diagonalizable,
" A—e€ €€ <O, 5\> when B is not diagonalizable.

We show in the proof of Corollary A.5 that A > 0, which implies k > 0.

Denote the Jordan blocks of By, by B,,1 < n < N. Each block B, of length 7, is
associated with the eigenvalue A\, and the set of generalized eigenvectors o)1 <k<Vt,.

I

In particular, o is the (standard) eigenvector of B,. Notice here we slightly abuse

notations as we are using the same notations B,,, ¢, o for the matrix B in Appendix A.

For a Jordan block B,, with Re()\,) > &, we set

Iy
Hy =Y b0 (),
i=1
where ©" denotes the conjugate transpose of a vector v and
Dh=1; b=t 2< < by (7)
a=1 gu=1+c, 2<j<b; ty=2(Re(\) = ).

Meanwhile, for a Jordan block B,, with Re(),,) = k, we define
I
H(€) = 3 bl (217)
i=1
where 0! ’s are the same as in (7), except that we replace the above t, with t,, =
2(Re(M\n) — A +¢) for any € € (0,\) and write b = bl (€) to emphasize the dependence
on €. Now, assume [ = {n € {1,--- ,N}: ¢, > 2,Re(\,) = A} and set

He)= Y Hy+ Y Hple)

ne{l,..,N}\I mel
Next, we define
1 -+ 0
hi=|H(e) [+ . ; hy = h3 =1,
0 --- 0
op

MZO+£§%HWWWW hs = (1+ P || ()],



Regarding the potential function U, we assume that

Condition H1. U is m-strongly convex and L-smooth: mI; < VU (z) < LI, for any
r € R4

The following important result is established by Monmarché in [Mon23]. Further details
are provided in Theorem A.4 and Corollary A.5 in Appendix A.

Theorem 2.1. (a shortened version of Theorem A.J and Corollary A.5) Assume the
setup above for the P-th order Langevin dynamics (5), including Condition H1 on the
potential function U. If the friction v is sufficiently large:

L
V2= 2\/—h1 max{\/h2h5,\/@}»
K K

1 1 (1 o1
then the Pdx Pd matriz M := T T ®14 is symmetric, positive
(% (1 ... 1) - H(e) )
definite and satisfies
MJy+ JJM < —2pM, p:min{ghi,ﬁ}. (8)
37

In particular, p = p(v, L, P) and v = (7, L, P) depend on ~, L, P but not on the
dimension parameter d. Furthermore, Amin pr = Amin. v (P) and Amax. s = Amaxr (P) are
respectively the smallest and largest eigenvalues of the positive definite matriz M, and
they depend on P but not on d.

Remark 2.2. Condition H1 is exactly Condition F in Appendix A specified for the P-th
order Langevin dynamics (5).

Example 2.3. Here we demonstrate how to find 7y and M in Theorem 2.1 in the

0 -1 0
case P = 4. The matrix B = |1 0 —1] is diagonalizable. It has eigenvector
0 1 1

vy ~ (—0.877 — 0.745i, —0.785 4 1.307i, 1) corresponding to eigenvalue 0.215 + 1.3074,

v ~ (—0.877 4+ 0.745i,—0.785 — 1.307i,1) corresponding to eigenvalue 0.215 — 1.307:

and vs ~ (0.755,—0.430, 1) corresponding to eigenvalue 0.570. Then the matrix H is
3.341 —1.004 —0.999

approximately [ —1.004 4.850 —2.000 | with eigenvalues (approximately) 6.168, 4.098
—0.999 —2.000 3.000

and 0.924. From there, one deduces h, ~ 3.341, hy = 2.705, hs = 5.410, k = 0.924 and we

know beforehand that hy = hy = 1. Thus, we have vy ~ 24/ 36?5111; - (3.547) and

1 1/~ 1/v 1/
Ve | (/00924 —(1/L)0.278 —(1/L)0.276
11/ —(1/L)0.278 (1/L)1.341 —(1/L)0.553
1/ —(1/L)0.276 —(1/L)0.553 (1/L)0.830
6
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In the upcoming part, we will assume a strengthened version of Assumption 2 in
[IMMW*21] about the potential function U. This strengthened assumption will en-
sure that we can approximate the nested integrals in Lemma B.1 with reasonable accuracy,
and ultimately allow us to construct an MCMC algorithm with a better discretization
error (with respect to the dimension d and the accuracy level €) than [MMWT21]. We
note that in the case where U is not a polynomial or a piece-wise polynomial function,
the upcoming condition basically asks that sup, g« |V*U ()|, does not grow too fast
as « increases.

Hop

Condition H2. Let the stepsize 7 and the dimension d be fixed. There exists a positive
real number ¢ that does not depend on the dimension d and a positive integer « large
enough such that U is in C* and

Lo\’ /~\° N _
(J> (€1) (d+20)" < c-d- (Lpgn + Lipsa®™),
where Ly := sup,cga [| VU ()], C given in Lemma C.4 is a positive constant that
depends only on the friction parameter v and the smoothness parameter L, but not on
the dimension d or the stepsize 7.

Remark 2.4. We observe that Condition H2 is satisfied whenever U is a polynomial
of some degree k, since we can take & = k + 1 so that V*U = 0. This is the case with
quadratic loss function in our numerical experiments for Bayesian linear regression (our
Section 3.1). More generally, one can consider a polynomial regression problem [Jun22,
Section 3.2].

Remark 2.5. In the case where U is not a polynomial, an example is the regularized
Huber loss function that is U(z) := Uy(x) + 4|x|? for some X > 0, where

s if ] <
)=y 2 s
alr| — % otherwise,

for some positive parameter a ([SC08, Page 44]). In fact, for this example, we do not
need to verify Condition H2 since the latter is to ensure we can approximate the nested
integrals in Lemma B.1 (a fact pointed out in the paragraph before Condition H2).

Remark 2.6. In the case where U is not a polynomial or a piece-wise polynomial function,
Condition H2 basically asks that sup,cga [| VU (2)||,,, does not grow too fast as v increases.
This Condition as stated is quite hard to verify however. Hence, an example of a condition
that implies Condition H2 and is easier to check than the latter is: there exists an integer
K € N and real numbers ¢, 8 > 1 such that for every k > K,

Sup |V*U (2 H < +/cl'(k/B+ 1)d¥, 9)

where I'(+) is the gamma functlon. Then, since

(k)3 + V)R CH(d + 2k 5 (5 PO (d + 2k)"

o (k12 = 2mk(E)2 =0
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for any fixed 8 > 1 and d, where we applied the Stirling’s formula I'(z + 1) ~ v/27z(%)”
as r — oo, the parameter o in Condition H2 is guaranteed to exist. Finally, we note that
(9) is similar to the assumption in [WWJ16, Theorem 3.3] in the context of accelerated
gradient methods in optimization.

Remark 2.7. Our Condition H2 is much stronger than Assumption 2 in [MMW™21],
even though both are roughly about the smoothness of the loss function U. The reason is
as follows. The mixing time of our P-th order LMC algorithm is determined by the error
in our discretization scheme of a P-th order Langevin dynamics. As it will be clear from
our proofs, the discretization error is a sum of two parts: the first part being the error of
a splitting scheme, and the second part being the error of a polynomial approximation.
As P increases, we can show that the former gets smaller; however, we cannot do the
same for the latter. Thus, in order to obtain an improvement of the discretization error
as P increases, one must assume some condition for the polynomial approximation error
to be dominated by the splitting scheme error. Condition H2 ensures this outcome.

Remark 2.8. In practice, even when condition (9) or Condition H2 is not satisfied,
our P-th order LMC algorithm might still work well; see, for example, our numerical
experiments for Bayesian logistic regression (Section 3.2).

2.1. Fourth-order Langevin Monte Carlo Algorithm.

2.1.1. Fourth-order Langevin Monte Carlo algorithm. Given the iterate x(®), the next
iterate z**1 is obtained by drawing from a multivariate normal distribution with mean
M(z*) and covariance X, both of which are stated in Lemma B.2.

The proof of the next result is presented at the end of Section 2.1.3.

Theorem 2.9. Assume Equation (10) satisfies Conditions H1 and H2. Let a be any

positive constant satisfying
. [m ok
a < min a9 0 o )\min )
B {37 6 } M
where the positive definite matrix M and the constants v, m, L,k are from Section 2.
Denote p the invariant measure associated with the fourth-order Langevin dynamics (10).

1/7
Choose a 2-Wasserstein accuracy of € small enough such that ng := (ﬁ) < min{n*, %

where h is defined in Proposition 2.18 and n*, Cy are from Lemma B.4. Suppose we run our
fourth-order Langevin Monte Carlo algorithm with stepsize ng, then Wasss (Law( (k9)), [L) <
€, where k* is the mizing time of the fourth-order Langevin Monte Carlo algorithm with
respect to p that is given by

2C4EZ~,u [’Z — $(0)‘2:| (203)1/7 dl/?

€2 h €7

k* =log -1,
where Cs,Cy are positive constants that depend on v, L,c but do not depend on the

dimension parameter d.
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Remark 2.10. Our mixing time rate of O<%> improves upon the rates in [MMW*21]
in terms of both d and e dependencies. For instance, [MMW™21, Theorem 1] has a mixing
time rate of O(‘ﬁg)

2.1.2. Derivation of the discretization scheme. Consider the fourth-order Langevin dy-
namics:

( VU(Gt) + yuo(t)) dt,
(—yvi(t) +yus(t)) dt,
(—yvs(t) (t))dt + \/2vdB,. (10)

Remark 2.11. The equation (4) in our introduction (Section 1) is studied in [MMW*21]
and contains two parameters (namely v and L in their paper) compared to our equation (5)
that contains only a single parameter v. We make such an assumption out of convenience
and our paper is able to handle extra parameters as in [MMW™21], and this is explained in
Appendix A. Specifically in Equation (46) in Appendix A, we can take A = —%(Id, 0,...,0)

and X = \/%]p.

Below we will write |-| for the Euclidean norm and |-|,, for the M-norm |z|,, = Vo T Mz.
The numerical scheme for fourth-order Langevin dynamics consists of three stages: updat-
ing 2 to (t), then updating & (¢) to Z(t), then updating #(t) to Z(¢) (for t € [kn, (k+1)n]).
Each stage adopts a splitting scheme.

— yus(t

Stage 1: Set the initial value

#(kn) = (00km), i1 (k). (k). g (k) ) = 2.
For t € (kn, (k+ 1)n], let

and

dO(t) = o, (t)dt,
dis(t) = (—vor(t) + 0§ ),
dbg(t) = (—ybo(t) — y03(t))dt + r/2vdB,.

Stage 2: Set the initial value #(kn) = ™. For t € (kn, (k + 1)5], let
dvy (t) = (=g(t) + 7oa(t)) dt,

and

dO(t) = oy (t)dt,
dig(t) = (—01(t) + v03(t))dt,
9



dig(t) = (—b(t) — 7s(t))dt + r/2vd B,

where §(t) is a polynomial (in ¢) of degree a — 1 and approximates VU (A(t)), and §(t)
will be defined in (13) below.

Stage 3: Set z(kn) = 2®). For t € (kn, (k + 1)n)], let
dvy(t) = (—g(t) + 70a(t)) dt,

and
do(t) = v (t)dt
dvy(t) = (=701 ( )+ 0s(t))d,
dvs(t) = (—0(t) — 703(t))dt + /2vd B,
where () is a polynomial (in t) of degree o — 1 and approximates VU (A(t)), and §(t)

will be defined in (13) below.

Finally, set
gD = Z((k 4 1)n). (11)

Definitions of j(t) and g(¢): Recall U is a map from R? to R, so that VU is a map
from R? to L(RY,R?) where L(R9 R?) is the space consisting of bounded linear maps
from R? to RY. Per [Car71, Page 70], the Taylor polynomial of degree o — 1 which is
associated with VU and centers at the origin is

a—1
VU (0) 4y
— 12
Pa,1($) Z(k_1)|x 9 ( )
k=0
where per [FA89], ¥ 1(;)) = it ﬁ%@)m? T
1 d
This allows us to define
G(t) = Paca(0(t));  G(t) == Paa(0(2)), (13)
where
0(t) = 0" + (t — k),
and

n Jkn
t —kn)? t —kn)3
+w§k)( 2‘77) _|_,yz<vék)_v§k)>( 3'?7).

Remark 2.12. The definitions of g and g in (13) require finding multivariate Taylor
polynomials, which is a challenging task in itself. One can use numerical software to
help with this, for example, by using Maple™ ([Red12]) or the calculus package in R
([Gui22]).

The next result is a consequence of Lemma B.1 and Lemma B.2 from Appendix B.
10



Proposition 2.13. E[z*V[z®] = E[z((k + 1)n)|z(kn)] follows a multivariate normal
distribution with mean M(x™®)) € R* and covariance ¥ € R**. The explicit forms of
M(z"®) and X are stated in Lemma B.2.

Remark 2.14. The authors of [MMW21] propose an MCMC algorithm based on third-
order Langevin dynamics. In the case where U is a general potential function and not ridge
separable, an important step in their algorithm is the Lagrange polynomial interpolation
step ([MMW21, Section 3.3]) to approximate the path s — VU (8%) + (s — kn)p™) for
given vectors 0 p(*) in R? and s € [kn, (k+1)n]. There seems to be some major difficulty
in applying this Lagrange polynomial interpolation step to our MCMC algorithm based
on fourth-order Langevin dynamics, which pushes us to use Taylor approximation of VU
instead. We further explain the difficulty of using Lagrange polynomial interpolation for
our algorithm in Appendix D.

Remark 2.15. One cannot add another stage to the above discretization procedure of
the fourth-order Langevin dynamics, since it is unclear how to implement the resulting
algorithm in that case. The reason the current algorithm which is based on a three-
stage discretization procedure can be easily implemented is that per Proposition 2.13,
E[z*D]z®] = E[z((k 4+ 1)n)|2™] is a multivariate normal distribution. Now suppose
that we add another stage of the discretization procedure:

Stage 4: Set #(kn) = 2®). For t € (kn, (k + 1)n)], let
diy (t) = (=g(t) + yva(t)) dt,

and

dog(t) = (=70 ( ) — y03(t))dt + \/2vdB;,

where §(t) := P,_1(0;) is a polynomial (in t) of degree o — 1 and approximates VU (0(t)),
noting that P,_; is the multivariate Taylor polynomial given in (12). Per Lemma B.1,
0(t) has the general form F(k,n,~,t) + fljn G(k,n,v,s)dBs, so that A(t) is approximately

t
ok / VU(F(k, n,7,8) +
k

n

t

G(k,n,, r)dBT) ds +7/ Uo(s)ds.
k

kn n
In the case Where U is not a quadratic potential function, the presence of the term
VU(F (k,m,7,s) + fk (k n,')/,r)dBr> on the right hand side suggests that E[ (t)|z™]

may not be multivariate normal, which makes the algorithm difficult to implement.
Consequently, we do not have more than three stages in our discretization procedure.

2.1.3. Proofs. We need a few technical lemmas whose proofs are placed near the end of
Appendix B. First, we quantify how well (t) and g(t) respectively approximate VU (6(t))
and VU (0(t)).

11



Lemma 2.16. Under Conditions H1, it holds that

2 L.\?
ot te[kn,(k+1)n]

2 Lo \? _
1 < (—‘) sup EHG(t)QO‘
/) telkn,(k+1))

sup E vaé(t)) —5(t) o(t)™

telkn,(k+1)n]

sup UVU 1) - g(t)

te(kn,(k+1)n

where Ly := SUp, cpa HV U(@)]lop

|
I

Next, we bound the differences in L?-norm of variables of two consecutive stages.

Lemma 2.17. Under Conditions H1 and H2, it holds for t € (kn, (k + 1)) that
E[|o.(t) — 51 ()] < Cg(d+1)< ((7+1 27+ v/27) 2) c>n5,
IED@(t)—G_(t) 2} <Ga+1)(P((r+17+ 27+\/_2) )’
E[J5a(t) = ()] < Cod+1)7* (73 (7 + 1)* + 2y + V29)*) +¢)

+Co(d+ 1)72<(7+ D2+ (2 + V29 )
E[Jos(t) - 35(6)"] < Cald+ 1" (12((7 + 12 + @7+ v/29)%) + <)’
+CQ(d+1)74<(’y+ + (27 + v/27) )

777

The upcoming result bounds the discretization error of the numerical scheme (11).

Proposition 2.18. Assume Equation (10) satisfies Conditions H1 and H2. Let a be any
M and the constants v, m, L,k are from Section 2. Denote p the invariant measure of
the fourth-order Langevin dynamics (10).

positive constant satisfying a < min Amin, M, Where the positive definite matriz

Then regarding the discretization error, it holds when n < min{n*, %} that

E “x((k‘ +1)n) — x(k+1)|2] < Cydn® + 046_(k+1)h’7]E[|Z —z© ﬂ : Z ~ .

In particular, n* is defined at (55), and h := 2p— 5 2_“M where p, M are from Theorem 2.1

m Ok
3y 6
are positive constants that depend only on vy, L,c but do not depend on the dimension
parameter d.

and a s any positive constant equal to or less than min{ Amin,vr- Moreover, Cs, Cy

Proof. Step 1: Assume t € [kn, (k + 1)n] and recall that z(¢) = (0(t), 01, 02(t), U3(¢)).
Based on (11), we have

dz(t) = b(t)dt + \/2yDdB;,

12



where

Od Od Od Od ﬁl(t)
|02 04 04 Oq| 5. _ [ —9@)+~0a(t)
D= (oj 0y 0 oj) b= (wl(t) +7@3(t)) :

0 04 04 14 —7172(t)—’y@3(t)

Meanwhile, the fourth-order Langevin dynamics in (10) can be written as

da(t) = b(z(t))dt + \/2yDdB;,  b(x) = (VU(9> ”"’2) |

—Yv1 + U3
—YV2 — VU3
Then

This leads to
CE[(a(t) 20 M(a(t) - 2(0))]
—E|((t) - 2(0)) T M(b(a(t)) - b(@®)| +E|(2(t) — 2() M (b)) - b(1)) ]
+E|(b(a(t) — b(@(t) M(x(t) — 5(0)| +E[ (b(z(6) = b)) "M (a(t) = 2(1))|, (14)

where

Recall the M-norm |z|,, = V" M« and notice that
((t) = 2(1)) " M (b(a(t)) — b(E(t))) + (b(x (1)) — b(x(1))) " M(x(t) — 2(t))
—z(t M/ Jp(wx(t w)Z(t))(z(t) — z(t))dw

+/0 ((t) = 2(t)) " Jy(wa(t) + (1 = w)z (1)) dwM (x(t) — 2(t))
< (a(t) = 2(t) (=2p) M (a(t) = 2(1)) = =2p |2(t) — 2(t)[3 - (16)

where the last line is due to the contraction property (8) in Theorem 2.1.

m K

36 } Amin, v and notice that per Theorem 2.1,

Moreover, choose any positive a < min {

. 17
)\min,M <0 ( )
From (14), (16), (17) and Cauchy-Schwarz inequality, we can deduce that

d 2
ZE[lo(t) - 2(0)1}] (18)

13



< ~9pEla(t) — #(1)[3, + 2a le(t) — 2] + > M2, (42 + DE[pa(t) 5[]

(19)
By combining the bound in (19) with
\V )\min,M |$’ S |«T|M S \V4 )\min,M |.T|, (20)

for any x, we get

LR [let) - 2(1)2,]

dt
s(—2p+ )Enx(t)—z(mm+§||M||§p(72+1>E[|b<z<t>>—B(t)ﬁ]. (21)

min, M

Step 2: We will bound E[‘b(i(t)) - 5(t)|2] as the second term on the right hand side of
(21). Based on (15), we will need to bound the L? norm of

g(t) = VU(0(t)), ~(v2(t) —02(t)), and  ~(v3(t) — V3(t)). (22)
Let us start with

B[Js(0) - V@) < 28| jat) - VUG()

1 L oE vaé(z)) —VU()

2] . (23)

2
The first term on the right hand side in (23) is bounded in (59) as E “g(t) — VU(H(t))’ } <

cdn’. The second term on the right hand side in (23) can be bounded by L-smoothness
of U in Condition H1 and Lemma 2.17 as

IEUVU(@(L‘)) - VU(é(t))ﬂ < L?EU@‘@) — () 1 < Gy,

where ('] denotes a generic constant that depends only on «, L and can change from line
to line. Thus,

E||g(t) - VUOW)[*] < (C1+ c)an’, (24)
We also know from Lemma 2.17 that
E[|o2(t) — v2(t)|*] + E[|53(t) — v3(t)]*] < Chdn”. (25)

Per (22) and (24), (25), we arrive at ]E[!b(f(t)) - B(t)ﬂ < Csdn”. Then per (21), we
have

d 2a
DE o) - #(0B) < (20 + o E[la(t) - 20] + Cad™.  (26)
dt )\min,M
Step 3: Let us rewrite (26) as
dA .
——(t) < —hA(t) + Csdn’, (27)

dt
14



/\ > 0and A(t) :==E[|z(t) — i(t)ﬁw] We solve (27) by the integrating
factor method. We mtegrate from k7 to t to obtain for t € [kn, (k + 1)),

where h := 2p—

t
At) = ngeht/ " (s — kn)Tds + e"*1DA(kn)
k

n

¢ EETRY
< Ogd/ (s — kn)Tds + "D A(kn) = M + eMEn= A (kn).
k

U
Therefore, we get
Csd

A(k+1)n) < =0+ e A (kn),
which leads to

k-1

Csd 8 —jh —(k+1)h Csd 8 1 —kh
A((k—l—l)n)ﬁ?n ;ejn—l—e TA(0) < g T 1ok + e "MA(0).
Observe that when n < +, we have — 7,7 < 2 and hence 5 < hn(11—%) < % This
implies
4C3d 7 (epn
A((k+1)n) < s +e "A(0).

By the equivalence of norm relation (20), we further obtain

1Cyd -
Mt [+ D) 2] < T8y ooty B Ja(0) - 2]

Now assume the continuous dynamics (10) is stationary and z(0) is distributed as its
invariant measure p. Then E[‘x(O) — x(0)|2] = E[‘Z — :c(o)ﬁw] where Z ~ p. We also

know Amin,ars Amax,p do not depend on d per Corollary A.5. Thus, we arrive at
E[\x((k +1)n) — 2 ﬂ < Csdn” + Cye” FTIME [}z - $(0)|2] ,

where C, Cy are positive constants that depend on v, L, ¢ but do not depend on d. Here
we abuse notations and reuse Cs, Cy.

Finally, the fact that the constant L and does not
depend on d is due to Theorem 2.1. ThlS completes the proof. 0

Proof of Theorem 2.9. Recall the basic fact about the 2-Wasserstein distance that
Wassy(Law(X), Law(Y)) < E[|X — V*]""%.
In view of Proposition 2.18, we can then derive the mixing time with respect to Wass,
by solving for Csdn™ < €2/2 and Cye~k+DME, HZ — :1:(0)H2 < €2/2. Solving for 5 in
1

2

the first equation gives n < n* := 364

Solving for k in the second equation gives

2CuE7 || 2= 4 o . . .
k > log > T 1. Plugging in the largest possible stepsize n* into the

right hand side of the previous inequality leads to the mixing time as claimed. 0
15



2.2. P-th order Langevin Monte Carlo Algorithm for P > 3.

2.2.1. P-th order Langevin Monte Carlo algorithm. Given the iterate 2(®)| the next iterate
z*+1) is obtained by drawing from a multivariate normal distribution. The mean vector
M(z®) and the covariance matrix X of this multivariate normal distribution are not
provided explicitly, but their derivations are explained in the proof of Lemma C.2 for any
order P > 3.

Below is the main result of this section. The proof is placed at the end of Section 2.2.3.

Theorem 2.19. Assume P > 3 and Equation (28) satisfies Conditions H1 and H2. Let
a be any positive constant satisfying

. m YK
< o> _ 0 A )\min )
a < min { 377 6 } M

where the positive definite matriz M and the constants v, m, L,k are from Section 2.
Denote p the invariant measure associated with the P-th order Langevin dynamics (5).

Let
R=4- ]l{ng} + (2P - 1) . ]1{]324}.

/R
Choose a 2-Wasserstein accuracy of € small enough such that ny = <2é21d> <
min{n**,% where h is defined in Proposition 2.26 and 77**,51 are from Lemma C.J.

Then Wass, (Law(2¥7)), 1) <€, where k* is the mizing time of the P-th order Langevin
Monte Carlo algorithm with respect to u that is given by

- ) _\1/R
2CiB7 |2 = 20|\ (2G5) T qum
—1

k* = l()g 62 h 61/(2R) ’

where 6'3, Cy are positive constants from Proposition 2.26 that depend on c,~v, L, P and
do not depend on the dimension d.

Remark 2.20. In the cases P = 3 and P = 4, the results in Theorem 2.19 match,
respectively, the result in [MMW™21] and the result in our Theorem 2.9.

2.2.2. Deriwation of the discretization scheme. We generalize what was done in Section 2.1
to the P-th order Langevin dynamics which is

d0(t) = vy (8)dt, (28)
dus () = —VU(0(8))dt + yvs(t)dt,
dv,(t) = —yop_1(t)dt + Y (t)dt, 2<n < P —2,
dvp_1(t) = —yvp_o(t)dt — yop_1(t)dt + /2vdB;.

Note that we can handle similar models with extra parameters as explained in Remark 2.11.
16



Let us describe the splitting scheme for any P > 3. We assume that we know z*) =

(9(’“), v%k), . vff) 1) and that is performing the (k + 1)-th iterate of our algorithm.
Stage 1:
Set the initial value
2% (kn) == (6 (kn), 01" (kn), . .., vty (k) = 2
For t € (kn, (k+ 1)n], let

and
doP (t) = vi" (t)dt,
dvs () = —yui (t)dt + fyvfﬁgldt 2<n<P-2,

n

dvp' (1) = —yvply(t)dt — yvp!, (t)dt + \/27dB;.

Stage j for 2<j < P—1:
Set the initial value
2 () = (6% (), o5 (k) 052y (k) ) = 2.
For t € (kn, (k+ 1)n], let
Ao (1) = —g®% (£)dt 4 057~ (¢)dt,
and
d6% (t) = v} (t)dt,
dvili(t) = =) (H)dt + )i dt, 2<n <P -2,
dviﬁil(t) = —fyv;tiQ(t)dt fyv;tj L(t)dt + \/%dBt.

Note that ¢*(¢) is a polynomial (in t) of degree o — 1 and approximates VU (6%i-1(t)),
and ¢*% (¢) will be defined in (30) below.

Finally, we set

) = 2P ((k + 1)n). (29)
Definitions of ¢*i(¢),2 < j < P — 1: Here we define the polynomials ¢*% (¢) which
approximate VU (6%i-1(t)).

Recall the Taylor polynomial P, _; of degree a — 1 centering at 0 and associated with VU
n (12). Inductively for 2 < 7 < P — 1, let us set

g (t) = Paca (0797(1)). (30)
17



Remark 2.21. In the case P = 3, the above splitting scheme is fairly similar to the
splitting scheme in [MMW™21]. The only notable difference is that we employ Taylor
polynomial approximation while the authors of [MMW21] employ Lagrange polynomial
interpolation. The necessity of this difference has been discussed in Remark 2.14 and in
Appendix D.

Remark 2.22. The general idea of our numerical scheme is that there are several stages
of refinement. At every stage, the variable v; which contains the non-linear term VU ()
is split from the other variables and approximated first, while the vector formed by the
remaining variables is approximated by a multivariate Ornstein-Uhlenbeck process. As a
result, the discretization procedure only works for P > 3.

Moreover, there are P — 1 stages in the above discretization procedure and we cannot

add another one to it. The reason is similar to the one given in Remark 2.15.

2.2.3. Proofs. The following result is similar to Lemma 2.16. The proof is simple and is
therefore omitted.

Lemma 2.23. Denote L, := sup,cga ||[VOU ()]
1<j<P—1 that

sup ]E[‘VU(@Stjfl(t)) — g (t)|2] < (ﬂ)2 sup IE“@SW*(t)‘Qa].

t€[kn, (k+1)n] al ) seln, (k1))

Under Conditions H1, it holds for

op”

The next two results bound the differences in L?-norm of variables of two consecutive
stages. Lemma 2.25 is a consequence of Lemma 2.24. Their proofs are deferred to near
the end of Appendix C.

Lemma 2.24. Assume P > 3 and consider the splitting scheme at the beginning of this
section with P — 1 stages. Denote the stages by 7,1 < 7 < P — 1. It holds that

stq (t) . Uﬁlk‘)

2
o for j = 1: SUPe(pn, (s 1)s) E[ ] <CudP1<n< P—2;

SUD¢e (kn, (k+1)] E{ vpty(t) — ’Up) ‘ ] < C3t dn and

S“Ptewn,(kﬂ)n]E“@S“(t) — 6" ] < C5dn?.

o forj=2
and P = 3: SUD¢e (kn,(k+1)n [’vStQ t) — @itl( )‘2] < CfthWQ,
SUPtE (h, (k+1)7) E“U%Q t) - Ugtl( )| } < C5%dn? and
SUDye (ko b+ 1)) [W“Q (t) — Qs“(t)IQ] < C5dn*.
and P > 4: $upyc( iy B[[1172(6) — i ()] < G2

Sy i 170 B 052 (1) — v;wt)r?} <Cd 2<n < P-3;
18



S S 2 S
SUD¢e (kn,(k+1)n) E|:|UPEQ—2 t) — Upt1 2 t)‘ < 0131:3261773;
S S 2 S
SUDye (ko -+ 1)1 E“U 2, () —vpl ()| < CP21dn® and

SUPy¢ (kn, (k-+1)n] E“@ 2(t) — 95“(?5)\2] < C%2dn.

(
(

[ I | E—

Here, {C’,sfj j=1lorj=21<n< P} are constants that depend on c,~vy, L, P but do

not depend on the dimension d.

Lemma 2.25. Assume P > 3 and consider the splitting scheme at the beginning of this
section with P — 1 stages. Denote the stages by j,1 < j < P —1. It holds for j > 3

N . 2 o
a) and 1 <n < P —j—1:SUDse(pn (k1)) E[ o () — Untj—l(t)‘ } < O

2 A
0 - | < o are

]

b) andn =P —j: SUP¢e (kn,(k+1)n) E{

o (1) = i (1)

c)and P—j+1<n<P-1: SUDse (k, (k+1)n]E[

< Cvsztj dn4j+2n—2P—1,.
st stj_ 2 sty 7 2j+2
@) SUDse a1y B |10 (1) = 0 ()| < O 42,

{C’St] 3<j<P-1,1<n< P} are constants that depend on c,~y, L, P but do not

depend on dimension d.

Consequently, it holds for the last Stage P — 1 that

stz st1 2 E (9St2t _estlt 2 < Cst2 Cst2 d 4 pP—3
o (Bl - 0] Bl - 0 0)]) < (03 + o s
31

and

H

i (PZEU“““ - ff”@ﬂ+E[|9“P-l<t>—95@—2@\2})

€(kn,(k+1)n] \ ,
P
< (Z ijP—l) dp*™', P >4 (32)

n=2

Proposition 2.26. Assume Equation (28) satisfies Conditions H1 and H2. Let a be any
positive constant satisfying

. m YK
a < min a9 a0 /\min )
= {37 6 } M

where the positive definite matriz M and the constants v, m, L,k are from Section 2.

Denote v the invariant measure of the P-th order Langevin dynamics (28).
19



Assume further that n < {n**, %} Then regarding the discretization error, it holds when
and P > 4 that

E|[2((k + 1)) — 20| < Codn? ! + CoeSHME ||z 20|, Z o~
and when P = 3 that
E “x((k +1)n) — x(k+1)|2] < Cadn* + 546_(k+1)h"]E[|Z —z© ﬂ : Z ~ 4.

2a

In particular, n** is defined at (73), h 1= 2p — 3= —

where p, M are from Theorem 2.1

mIES Amin M - Moreover, C
k] ) 3

and a 1s any positive constant equal to or less than min {5, s

and 54 are constants that depend on v, L, c but not on the dimension d.

Proof. We will follow the argument in the proof of Proposition 2.18.
Step 1: Let us write
datr-1

= b(t)dt + \/2vDdB;,
where b(t) € Mp,; and D € Mpgypg are respectively given by:

0
—g*tP1(t) + vy P (t) Od Od
stp_1 stp_o . .
_ —yU t) + yv t
b(t): YU1 ()'73 () . D=
. : . : 04 04
—VUPtfgl(t)+7vzifIQ(t) Oq O0a 14
—yvply () —yvpli ' (t)

Meanwhile, the P-th order Langevin dynamics (28) can be written as

U1 (t)

=VU(0(t)) + yva(t)

dﬁ(t) —YU1 (t) :‘{' ’)/Ug(t)

= b(z(t))dt + \/2yDdB,,  b(z) =

—yvp_3(t) + yup_1(t)
—yvp—2(t) — yvp-1(t)

—b(2*71))dt + (b(a™P-1(t)) — b(t))dt,

0
(g2 (1) = VU@ (1) + (0377 () = 03 2(1))

' (07 (1) - 57 0) -

v(v;tfil(t) —v

20



This leads to

a5

ZE|(a(t) — 2" (1) "M (2(t) — 2™ (1))

T

= B[ ((t) — 2= (1) M (b(a(t) — b (1)) |
+E|((t) - ()"

M (b(ar-1 (1) = b(1)) |
+E[ (b (1) b “P1>Y’< (t) = o7 (1) |
—i—E[(b(xStP ! )T M (z(t) — 2™~ 1(t))]

Notice that

(w(t) — 21 (1)) " M (b(x(t)) —

(34)

b1 (1)) + (bx(t)) — b(a*=1 (1)) ' M (x(t) — &(t))
< (a(t) — 3(t)) "M /O J(wa () + (1 — w)z()) (z(t) — 27 (£)) duw

+/0 (m(t) — xStpfl(t))TJb(wx(t) + (1 —w)z(t)) de( (t) — P 1(t))
< (a(t) = 27 (1) ' (=20)M ((t) = 2%7=2 (1)) = =20 |e(t) = 2(1)[3; (35)
where the last line is due to the contraction property (8) in Theorem 2.1

Moreover, choose any positive a < min { m IR

36 } Amin, v and notice that per Theorem 2.1

< 0.
>\min,M

(36)
From (34), (35), (36) and Cauchy-Schwarz inequality, we can deduce that
d NRPPINE:
N j— 5 - < —
th“x(t) x (t)‘M] 2p]E[‘x(

t) — a1 (6)]3, + 2a |z (t)

S —1 2
— pSte (t)‘ ]
stp_ SN2
= IMIZ, (32 + DE[ e (6) = b@)*] - (37)
By combining the bound in (37) with (20), we get

ZE[lst) - 0]

< (—2,0 + ArjiM)EDW) - a:StP*(t)‘?w] + 2 M2, (7% + 1)E[\b(aftm(t)) . B(t)ﬂ.

(38)

Step 2: We will bound E| |b(z5"7-1(¢)) — B(t)ﬂ as the second term on the right hand
side of (38). Based on (33), we will need to bound the L? norm of

gstp,l(t) _VU'(Qstp,l(t))7 7( stp_q

Uy

(1) =52 (0)), (0 (1) — o).
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Per estimate (32) Lemma 2.25 and in the case P > 4 (the case P = 3 is similar and is
handled at the end of this proof), we have
|

||y (s - o2 0) [ + 2| (700 - o)

<2(Csrt O Y, (39)

Meanwhile,
E[|g*=(t) = VU (0 ()]
< 2K |[g= (1) - VU (02 0)[*] + 2E|[VU (0= (1) - VU e 1) ]
The same argument as the one in (59) yields
E|[g*7=(t) = VU (0*-2(1)[*] < ean®™,

for some positive constant c¢. Moreover, L-smoothness of U in Condition H1 and esti-
mate (32) of Lemma 2.25 imply

E||VU(0*7=2(1)) - VU (0 (0) '] < 22D,
The last three bounds lead to
B (1) = VU6 ()] < (L2Dr= + 1)an?™ . (40)
The combination of (33), (39) and (40) lead to
E|[o(ar(6) = b(0)[*] < Cra?™!, P >4,

where 51 is a generic positive constant that depends only on ¢,~, L, P and can change
from line to line. Then from (38), we get

%]E Ul‘(t) — :L’Stpfl(t)ﬁv[]

)E[]x(t) — et b)) + 3 IM|2, (2 +1)Chd?P", P> 4.
(41)

2a
< |(—-2p+
B < A

min, M

Step 3: Solving the differential inequality (41) by integrating factors as in the proof of
Proposition 2.18, we arrive at the desired discretization error in the case P > 4.

Step 4: As the last part of this proof and in the case P = 3, we follow a similar path
and use estimate (31) in Lemma 2.25 (instead of (32)) to get an analogous inequality to
(41) that is

%E[‘x(t) — a:StP*(t)ﬁw}

)]E[!x(t) — (t)ﬁw] + g HMHip (72 + 1)51d774. (42)

22
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Then by solving the differential inequality (42) by integrating factors as in the proof of
Proposition 2.18, we arrive at the desired discretization error in the case P = 3. The
proof is complete. O

Proof of Theorem 2.19. The argument is the same as the proof of Theorem 2.9 at the
end of Section 2.1.3. We have Wass,(Law(X),Law(Y)) < E[|X — Y|2] Y2 Then per
Proposition 2.26, we can solve for 7 in Cydn*ltr=t@P-DLirz1y < ¢2/9 and for k in
546_("’“)}”7EZN” [‘Z — 20 ‘2] < €?/2 to obtain the desired mixing time. This completes
the proof. O

3. NUMERICAL EXPERIMENTS

In this section, we will implement both third-order and fourth-order LMC algorithms.
From Section 2.1, we recall the fourth-order LMC algorithm samples a multivariate normal
distribution at every step, where mean and covariance are provided in Lemma B.1 and
Lemma B.2 in Appendix B. The mean in particular contains several nested integrals that
need to be exactly computed when the loss function U is a polynomial, and approximated
in the case where the loss function U is not a polynomial. We provide the calculations
related to these nested integrals for quadratic loss and logistic loss in Appendix E, which
allow us to perform the numerical experiments for our fourth-order LMC algorithm.

In addition, we will provide some calculations necessary to perform the numerical experi-
ments for the third-order LMC algorithm in [MMW*21] for quadratic loss.

When the potential function U(f) satisfies Condition H1, then for a small stepsize n > 0
and two arbitrary friction parameters v > 0 and £ > 0, the third-order Langevin Monte
Carlo algorithm is given as follows:

Algorithm 1: Third-Order Langevin Monte Carlo Algorithm

Let 2(0) = (ew),vgox v§0)> — (6%,0,0)

for k=0,1,--- ,N—-1do
Sample 2 ~ A (pu(z™), ), where p and 3 are defined in the following
equations

end for

The update of the states x from step k£ to £ + 1 is obtained by drawing from the
distribution with mean u (x(’“)) and covariance 3:

— = AU(6,v1) + p2v1 + fa3v2 on-lqg o121y o13-14
N(x) = —%AU(Q,M) + [22V1 + [23V2 M=o dy o-1g 09314 |, (43)
ELAU(0,v1) + psovr + pssve o13-1qg 09315 03314

where all p’s and o’s are defined in the article by [MMW™21]. Now we present the
fourth-order Langevin Monte Carlo algorithm as follows:
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Algorithm 2: Fourth-Order Langevin Monte Carlo Algorithm

Let 200 = <9(0),v§0),v§0),v§0)> = (6%,0,0,0)

for k=0,1,--- ,N—1do
Sample ) ~ N (m(z™), X), where m and X are defined in the following
equation (44)

end for

The update of the state x from step k to k£ + 1 is obtained by drawing a sample from the
multivariate Gaussian distribution with mean m(z) and covariance ¥ given by:

mo oo Llag o011y 002-1lqg 00314

R L oo -lg o111y o1a-Iqg 01314
m(x) = , 3= I I 7 | (44)

mo 002 - 4d 01214 02 - 1q 02314

ms oo3-lg 01315 o93-1qg 03314

where the explicit formulas to compute m; € R? and 0i; € R are given in Lemma B.2 and
the calculations for particular loss functions are given in Appendix E. Note that both
algorithms require the initialization of the model parameter 6*. [MMW*21] recommended
that 6* can be chosen from the exact solution when U is a polynomial. However, we
initialize the sampling process randomly from the standard normal distribution, which
leads to superior performance.

3.1. Bayesian linear regression. We conduct experiments using our algorithms for
Bayesian linear regression-type problems using the Air Quality data from the UCI
Machine Learning Repository [Vit08]. It contains sensor readings from an array of
chemical sensors deployed in an Italian city to monitor air pollution. Collected between
March 2004 and February 2005. The dataset includes hourly measurements of key
pollutants such as carbon monoxide (CO), non-methane hydrocarbons (NMHC), benzene,
nitrogen oxides (NO,), and ozone (Os), along with meteorological variables such as
temperature and relative humidity. The dataset is often used for regression tasks to
model air quality indicators, particularly predicting CO concentration based on other
environmental variables. It presents challenges such as missing values and sensor drift,
making it suitable for testing robust data pre-processing and modeling techniques.

In this experiment, our goal is to sample the posterior distribution of the model parameters
that regress the concentration of CO present in the air. After pre-processing. The feature
matrix has d = 16 dimensions (including the intercept term) and a total of 7,674
observations.

We consider an arbitrary prior of 6 from N(0,107). The known posterior for the linear
regression problem is given as follows:

-1 -1
w(@) ~N(m,V); m:= <El + X;X> (X;y) , V= (Z_l + X;X) :
(45)
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where X and y are input data-matrix and output vector, respectively, and 3 = Al is the
covariance matrix with the Ridge regularization (L) parameter A, in this experiment, we
choose a smaller penalty A = 2.

To draw a sample from the posterior, at each iteration we perform a Cholesky decomposi-
tion to factor the covariance matrix into a lower and upper triangular matrix ¥ = LL"
and use the formula [WLOG6]:

g™ = (2®) + Lu; or  2®) =m (2®) + Lu,

where u € R* (or R*) with u ~ N(0,1) and p (z¥)) (or m (™)) is the mean vector
at k-th iterate of the respective algorithm. Note that the covariance matrix ¥ needs to
be symmetric positive definite (SPD) in order to factor it using Cholesky decomposition.
To ensure that we get an SPD matrix for arbitrarily chosen 7, &, and 7 values, we add a
small jitter (107°) to the covariance matrix. Then we perform a grid search to find the
optimal hyperparameters based on the lowest mean 2-Wasserstein distance, computed
using the formula from [GS84].
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F1GURE 1. Comparative performance of the 3rd- and 4th-order Langevin
Monte Carlo algorithms

The tuned hyperparameters for the third-order Langevin dynamics v = 5,7 = 0.011,
and £ = 2, and for the fourth-order Langevin dynamics v =1 and n = 0.011. For both
dynamics, we draw N = 1,000 samples from the posterior distribution and compute the
Wy (2-Wasserstein) distance from the known posterior defined in (45). The shaded region
both in Figure la. and 1b. represent half of the standard deviation in 2- Wasserstein
distances. The relative performances of the third- and fourth-order LMC algorithms are
presented in Figure lc. From this set of experiments, we notice that the convergence to
the posterior distribution is better for the 4th-order LMC algorithm than that of the
3rd-order LMC algorithm for a given stepsize 7.

Next, we present the effect of the variation of the friction parameter v in Figure 2. For the

same stepsize 1, we observe that the 4th-order LMC algorithm provides better convergence
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Monte Carlo algorithms for the same stepsize n and varying the friction
parameter -y

in terms of the 2- Wasserstein distance for smaller v values. However, this is not always
the case for the 3rd-order LMC algorithm.

3.2. Bayesian logistic regression. In this section, we provide the implementation of the
4th-order LMC algorithm for sampling in a classification problem. To implement the 4th-
order LMC algorithm efficiently, one needs to approximate the gradient of the potential
function in higher-degree polynomials. The last step can be done via softwares per
Remark 2.12; however this complicates the implementation of our algorithm. Therefore,
we arbitrarily choose third-degree polynomials to approximate the gradient of the logistic
loss function using a Taylor polynomial which is given in Appendix E.2.

We choose the Mushroom dataset from the UCI Machine Learning Repository 2. The
dataset contains 8,124 instances of gilled mushrooms, each described by 22 categorical
features such as cap shape, odor, gill color, and habitat. After pre-processing (e.g.,
OneHotEncoding for categorical features). The final input dataset has a dimension
d = 118, and a total of 8,124 observations.

The typical objective with this data is to build a machine learning model that classifies
whether a mushroom is edible or poisonous based on the given attributes. However, our
goal in this experiment is not to find the optimal model; rather, we sample the model
parameters and see how the accuracy measure varies as we increase the number of samples
from the posterior distribution of the model parameters.

Before starting the sampling process, we split the data into 70-30 training and testing
ratio and check the sample quality on the test set. We generate N = 150 samples of

2Mushroom. UCI Machine Learning Repository, 1981. DOI: https://doi.org/10.24432/C5959T
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FIGURE 3. Performance of the 4th-order LMC algorithm in sampling from
a non-polynomial potential function

the model parameters and run a grid search for the hyperparameters n and v. To avoid
overfitting, we use a larger penalty A = 25.

From Figure 3 (a), we see that the 4th-order LMC algorithm performs very well even for
smaller degree polynomial approximation of the gradient of the potential function. We
tune the model parameters n = 0.012 and v = 1. Then we show the effect of the variation
in the friction parameter for a chosen stepsize n = 0.012 in Figure 3 (b). We see that
smaller v values result in better performance in terms of higher accuracy.

4. CONCLUSION

In this paper, we proposed P-th order Langevin Monte Carlo algorithms based on the
discretizations of P-th order Langevin dynamics for any P > 3. We designed discretization
schemes based on splitting and accurate integration methods. When the density of the
target distribution is log-concave and smooth, we obtained Wasserstein convergence
guarantees that lead to better iteration complexities. Specifically, the mixing time of the

P-th order LMC algorithm scales as O (% /e ) for R = 41 (g +(2P—1)-1 (p=y, which
has a better dependence on the dimension d and the accuracy level € as P grows. Numerical
experiments were conducted to illustrate the efficiency of our proposed algorithms.
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APPENDIX A. SUPPORTING RESULTS FOR SECTION 2

Denote M,,, ,(R) the set of real matrices of size mxn. In [Mon23, Section 4.3], Monmarché
considers the generalized Langevin diffusions:

dXt - Andt,
dY, = —A"VU(X;)dt — yBY,dt + \/yXdW,, (46)
with A € My,(R); B,X € M,,(R); U € C*(R?); v > 0 and W is a standard p-

dimensional Brownian motion.

Set b as the drift coefficient of (46), that is

A
b(x,y) = (—ATVU(g) _ ”yBy) : (47)

We summarize here Assumptions 1, 2 and 3 in [Mon23, Section 4.3] regarding (46).
Condition F.

e There exist m, L, x > 0 and a symmetric positive-definite matrix H of size p x p
such that

HB + B"H > 2xkH, (48)

and that U is m strongly-convex and L-smooth: mI; < V2U(x) < Ll for any
r € R

e p>dand A= (1,0,...,0).

By By
Bay1 Ba
are respectively of size d X d, d X (p —d), (p —d) x d and (p —d) X (p—d). In
this case, we assume Bsy is invertible and that

E := By — B3B3, Bay

e When p > d, consider the decomposition B = where Bi1, Bia, Ba1, Bao

is symmetric positive-definite. Set D := BBy .

e When p = d, we assume B is symmetric positive definite. Set £ = B and D = 0.

Remark A.1. In [Mon23, Assumption 2|, the author writes HB > xH. If one looks at
the notation subsection right before Section 2 of the aforementioned reference, HB > xkH
for not necessarily symmetric matrix H B is understood as HB + BT H > 2xH, which is
what we have in our Condition F.

Remark A.2. In [Mon23], beside from Condition F, the author also assumes that V,U
for any |a| =Y. o; > 2 is bounded. Per private communication with the author, this is
done out of convenience to avoid technical regularity issues regarding the semi-groups. In
our case, we are interested in Theorem 9 in [Mon23| which only requires the boundedness
of second-order derivative of U and not of the higher order derivative.

The following result is stated under Assumption 3 in [Mon23].
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Lemma A.3. Under Condition F, there exist constants h; > 0,1 < i <5 such that

1
HA"AH < h,H, };@gEgm%
2
I, —D I, -D

Note that we follow the convention in [Mon23]: for m x m matrices M, H that are not
necessarily symmetric, M > H means (x, Mx) > (z, Hz) for all z € R™.

Theorem A.4. ([Mon23, Lemma 8 and Theorem 9]) Assume Conditions F and set

[ L
’}/0:2 hl—max{vhgh5, @}
K K

Further assume that the friction coefficient v is sufficiently large: v > ~y. Set p =
min{ o 7"‘}. Recall the drift coefficient b in (47) and denote Jy its Jacobian matriz.

sy 6
E (1, -D)\
([d —D)T 57 1S a

Lhy

Write (Id —D) as a block matrixz. Then M = <l

symmetric positive-definite matriz of size (d + p) X (dlp) such that
MJy+ J M < —2pM.

Moreover, the matriz M satisfies

1/F 0 3 (F 0

Lhq Lhy

A P-th order Langevin dynamics as the focus of the main paper is a special case of (46)
where p = (P — 1)d and

0 —I; 0 0

I, 0 -1y . :
I, 0 —1Iy4

0 0 I I4

The following Corollary is Theorem A.4 in the special case of P-th order Langevin
dynamics. The proof is mostly taken from [Mon23, Section 4]. We add some details
regarding dimension dependence of the parameters since this is not one of the goals of
[Mon23]; however, it is a crucial concern of our paper.

Corollary A.5. ([Mon23, Section 4]|) Conditions F'is satisfied for the P-th order Langevin
dynamics (50), so that the conclusion of Theorem A.4 applies to (50). In particular,
regarding the matrix M, we have E = 15, D = — (Id Id), while the matriz H, the

constants k and h;, 1 <1 <5 are explicitly provided in Step 3 of the proof.
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Moreover, p = p(v, L, P),v = (v, L, P) depend on ~, L, P but do not depend on the
dimension parameter d. Furthermore, Aminysr = Aminy (P) and Amax vt = Amaxmr (P) as
respectively the smallest and largest eigenvalues of the positive definite matriz M depend
on P and do not depend on the dimension parameter d.

Proof. The proof is divided into six steps.
Step 1: We start by observing a simplified form of the matrix B = Bp in (50):

O -1 0 ... 0

1 0 -1 :
B:Bsirn@Ida Bsim:: o . 0 s

: | 0 -1

0O ... O 1 1

where ® denotes the Kronecker product ([HJ94]). This simplified form indicates that B
and the (P — 1) x (P — 1) matrix By, have the same spectrum, and thus such spectrum
does not depend on d. Furthermore, it indicates that if v;,1 <7 < P — 1 are eigenvectors
(respectively generalized eigenvectors) of By, and e;, 1 < j < d are the standard basis of
R?, then w; = v; ® ej,1 <1< P—1,1<j<d are eigenvectors (respectively generalized
eigenvectors) of B.

Step 2: Let us verify that min{Re()\) : A is an eigenvalue of Bgy,} > 0, which to-
gether with B, By, having the same spectrum from the Step 1 imply min{Re(}\) :
A is an eigenvalue of B} > 0.

We have the decomposition Bgm = 2 (Bgim + Byw) + 3 (Bsim — Baw) := H + K where H
is a Hermitian matrix and K is a skew-Hermitian matrix. Now assume A is an eigenvalue
of Bgm: Bsm® = Az for a nonzero vector x = (x1,...,zp_1) € CP~1. Then \ = "B*ﬁk—s;"‘m
where z* denotes the conjugate transpose of x, and hence
r*Hz zp_1|’
Re(h) = 200 - [

T*x |x

We claim that zp_; # 0 which implies Re(A) > 0. Suppose the opposite that xp_; =0,
then it is easy to solve for Bgn,r = Ax to get vy = 29 = --- = xp_1 = 0, which is a
contradiction. This completes our argument for the Step 2.

Step 3 in the case where B is diagonalizable: Let us construct H, s that satisfy
Condition F in the simpler case where B is diagonalizable. The construction has been
done in [AE14, Lemma 4.3] or [AJW20, Section 2.1], and we summarize it here for the
sake of completeness.

In this case, B has (P — 1)d linearly independent eigenvectors w;,1 < i < (P — 1)d
corresponding to (P — 1)d eigenvalues \;;1 < ¢ < (P — 1)d. Denote w; the conjugate

transpose of w; and set H =: Zgl— Ld w;w;, then

(P-1)d (P-1)d
HB+B'H= Y (\+X)ww; >2min{Re(\;),1 <i < (P—1)d} > ww]

)
i=1 i=1
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—2)\H, X\ =min{Re()\): \ is an eigenvalue of B}.

Thus, in the case where B is diagonalizable, x in Condition F can be taken as A which is
a positive number per our Step 2 above.

Step 3 in the case where B is not diagonalizable: In contrast to the previous case,
there is at least one Jordan block of B of length ¢, > 2. In this case, and the construction
of H,r satisfying Condition F is more elaborate. Denote the Jordan blocks of B by
B,,1 <n < H. Each block B, of length /,, is associated with the eigenvalue A, and

the set of generalized eigenvectors vﬁlk); 1 <k </, In particular, oV is the (standard)
eigenvector of J,.

For a Jordan block B,, with Re()\,) > ;\, we set H,, = ZZ" bl v ( n)> where

zln

b}l = 1;(777'1 :cj(tn)2(1_j),2 <j</t, and ¢ =1;¢41 = 1—|—c 2< <4,
and t, = 2(Re(\,) — k).

Then per [AE14, Lemma 4.3], H, B, + B H,, > 2\H,,.

Meanwhile, for a Jordan block B, with Re()\,,) = )\, we replace the above f, with
tm = 2(Re(A,) — A+ €) for any € € (0, \) and define H,,(¢) = S b (€)om, @ ('U,(,?) . Then
Hp By, + Bl H,, > 2(\ — €)H,,.

Therefore, in the case where B is not diagonalizable, we denote I = {n € {1,--- , N} :

l, > 2,Re(\,) = A} and define H := H(e) = Yone(r,. g Ho + e Hu(e). Then we
have

H(e)B+ BT H(e) > 2(\ — €)H(e).

Thus, in the case where B is not diagonalizable, x in Condition F is A —e for any € € (0, 5\)
Notice A > 0 per our Step 2, so that it is possible to choose € > 0 such that A —e > 0.

Step 4: Let us verify that x, ||H||,, and |[H~|,, do not depend on d. The former is

clear from the fact that r is either 2) or 2(5\ — €) in the Step 2, and the fact that B has
the same spectrum as the (P — 1) x (P — 1) matrix By, per the first paragraph of this
proof. Regarding || H||,,, we will assume B is diagonalizable to keep things simple (the
case of non-diagonalizable B is almost the same). We know from the first paragraph of
this proof that

H= ) (uoeg)(ioeg)= Y  (w)e(gee))

1<i<P—1,1<5<d 1<i<P-1,1<5<d

( vwé‘)@(Z ej®e]~T>
1<i<P—1 1<5<d

vmf) ® 1. (51)
1<i<P—1



Thus, we have ||H||0p = ||Z1§igp_1 UiU;HOpHIdHop = HZlgigP—l Uiv;k”Op (see [LF72,

Theorem 8] regarding matrix norms and Kronecker product). Since » ,;pviv] is
a (P —1) x (P —1) matrix, ||H|,, does not depend on d. We can reach the same

conclusion for ||[H 1|, . noting that H = (37, p_, vivf)_l ® I

op’

Step 5: We verify that the constants in Lemma A.3 do not depend on d. In Lemma A.3,
the matrix £ = I; (pointed out below Assumption 3 in [Mon23]). Thus, we can take

hy = HHATAHOp,hQ = 1 and hy = 1. Then from (51) and A = (I; 0 ... 0) =
1 --- 0

(1 0 ... O) ® I4, we deduce that hy = ||H | © .. . Thus, hq, hg, hs do not
0 --- 0

op
depend on d. What remain to study are hy and hs. We have D = —(I,, ..., I;) as pointed
out below Assumption 3 in [Mon23]. It is easy to verify that (14 (P —1)/2)I(p_1)a —

(gd _OD ) > 0, which implies

({)d _OD) H™H < (14 P/2)HT H < (1+ (P = 1)/2)|[|[H7Y| H,

and hence hy = (1+ (P —1)/2) |[H7"|,,. The formula hs = (1 + P)|[H"||,, is obtained
, I, —-D\ (1l —D I; 0 . T
the same way, noting that (—DT 0 ) = (O 0 >+ (—DT O) - Finally, [[H™|,, =

o —1
(ZlgiSP—l Ui”z‘)

depend on d.

does not depend on d per the Step 3, so that h, and hs do not
op

Step 6: Let us consider p, 79 and Apin,ar of Theorem A.4 in the context of the P-th order
Langevin dynamics (50). Note that m and L are respectively the strong-convexity and
smoothness constants of U does not depend on d. This, combined with the conclusions in

the Step 3 and Step 4, implies that 7y = 2 % max {\/hghg,, \/h—;} and v > 7y does
not depend on d. Regarding Amin ar, it is pointed out below Assumption 3 in [Mon23]

that in the case of P-th order Langevin dynamics (50), £ = I; in Condition F. Then
inequality (49) becomes

0Nyt Y

Moreover, per (51), H and the (P — 1) x (P — 1) matrix ) ,_,.p_, v;v; share the same
spectrum which does not depend on d. Then by a consequence of Courant-Fischer-Weyl’s
min-max Theorem regarding comparison of eigenvalues of positive definite matrices ([HJ94,
Problem 4.2.P8, Page 238|, we can conclude Ay, as the smallest eigenvalue of the
positive definite matrix M does not depend on d. The same conclusion holds for Apax -

The proof is complete. O
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APPENDIX B. DETAILS OF FOURTH-ORDER LANGEVIN MONTE CARLO ALGORITHM

Lemma B.1 as the first result of this Appendix contains explicit form of the components
of Z((k 4+ 1)n) in terms of the components of 2*) in the splitting scheme (11). Based on
it, we will be able to derive in Lemma B.2 the conditional mean and covariance associated
with the fourth-order LMC algorithm in Section 2.1.

Here are the components of #(t) in terms of the components of z(*).

t
By(t) = e 1Ryl ’y/ e 1= 0y(s)ds + /2y | e 9B,
kn

t
— 2 <U§k) - vgk)> / e 9 (s — kn)ds + \/27/ e =94B,.
kn kn

Next are the components of Z(¢) in terms of the components of z(*.

t t
alt) = = [ g+ [ an(s)ds
k k

n Yl
: t — kn)?
= " — / g(s)ds + 7" (t — kn) + 7 (vék) - Uﬁk)) =t 2 2 ’ (53)
kn
t
o(t) = 6" + / U1 (s)ds
kn
t s — 2 - 3
kn Jkn ) '

t t
falt) = o = [ wi(s)ds 4 / by (s)ds
k k

n 77

k t — kn)?
= (k) — yvl (t —kn) +~ r)drds — vy vék) —( n) o (vék) — vgk)> —( n)
kn kn 2! 3!

t
—l—fyv:(),k)/ e VR s — 2 v2 / / e 7 drds
kn kn Jkn

— 3 v3 U1 / / (s=r) (r — kn)drds + v+/2 / / e 76 AB, ds,
kn Jkn kn
03(t) :U:(gk)e V(t=—kn) _ 7/ e 95y (s)ds + /27
kn
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t t t
:Uz())k)eﬂ(t*kn) + /27 efv(tfs)st —’Yvék)/ e7(t5)d3+72v§k)/ e =9 (s
kn

kn
—y / / / (=) w)dwdrds
kn Jkn Jkn

—k t — kn)3
+ 731]5147) / —y(t—s) ( 2' 77) ds 4 74 (’U:()’k) o U%k)) / ef’y(tfs) (8 3' 77) ds
' kn :

_,y 113 / / e V(t=s) o=y (r—kn) drds—{—’y U2 / / / e~ V(t=8) o=V (r=w) Jo1 s
kn Jkn kn Jkn
+ 1 (Uék) —vik) / / / e V=)= (yy — kn)dwdrds
kn Jkn Jkn
—72/2 ///ewrwe'ytsdBdrds
kn Jkn Jkn

Finally are the components of Z(¢) in terms of the components of 2*)

MOEDE —/ktg(s)ds—l—v/]: Bo(s)ds

n n
! — k:
= ng) — / g(s)ds + Vvék) (t —kn) —~ vik)( n) / / / w)dwdrds
kn kn Jkn
t —kn)3 t—k
_ ,YSUék)( '77) A <U§k) (k))( n)* + 42t / / o= r=kn) g 7
3! 4l kn J kn

— kn)ds

73U§k / / / =) dapdrds — vék)—vgk) / / / e_“’(’”_w)(w—kn)dwdrds
kn Jkn Jkn kn Jkn Jkn

+ 72/ 2y / / =2 dB,,drds,
kn Jkn
Ai(t) = 6% + / B (s)ds
3
=™ 4 v —kn) — / / r)drds + 'yv i) (£ = Fm)” ki1)* 721)5’6) (t— {{777)
kn JEn 2! 3!
_ 5
+ v / / / / dydwdrds—vgvék ( fin)* — (v?()k) v§k)> —(t k)
kn Jkn Jkn Jkn T 5!
+ 2 v3 ///e Y@=k dwdrds — ~° UQ //// e "WV dydwdrds
kn Jkn Jkn kn Jkn Jkn
—7 k / / / / =) (y — kn)dydwdrds
kn Jkn Jkn Jkn
+~%/2y / / / / e "B, dwdrds,
kn Jkn Jkn Jkn
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t t
Balt) = o) — / ou(s)ds + / Ba(s)ds
k k

n n

Lo t —kn)? t—kn)?
- WY“) (t —kn) + 7/ / g(r)drds — vzvék)& + 73@5@#
e Jon 2 3!

k t — kn)®
- / / // dydwdrds+74 (k( 477) +75<v§k)—v§k))—< 5'77)
kn kn Jkn
k)/ / / e W=k dupdrds + ~* UQ //// e 7Y dydwdrds
kn Jkn Jkn kn Jkn Jkn
+4° Uék)—v§k) / / / / e 7Y (y — kn)dydwdrds
kn Jkn Jkn Jkn
t s T w
— 3 /2y / / / / e'ﬂwdeydwdrds]
kn Jkn Jkn Jkn

7v§k)/ 5=k dg 4+ ~+/2 //ke_“’(s_’")dBrds
U

t s
— vk)/ / e V(S_T)drds+'ysv§k)/ / e‘”“‘”(r—kzn)drds
kn Jkn kn
.
— / / / / e 157G dydwdrds—i——va)// =) (1 — kn)2drds
kn Jkn Jkn Jkn kn J kn

= vék) +

_|_

7| v3 —vl //e V=) — k)2 drds — fyvk)/ / / eV =YW=k drds
3! kn Jkn kn Jkn Jkn

+74U§k / / // e 1 e WY dydwdrds
kn Jkn Jkn Jkn
+’y k ’Ulk) //// e Ve W) (y — k) dydwdrds
kn Jkn Jkn Jkn

—73\/27/ / / / (=9 ew=lgp dwdrds]
kn Jkn Jkn
(1) = o{Pe 7=k _ / e )5y (s)ds + /2y
kn

t
- @ék)e”(t_k”) + /27 : e 1) 4B,
U

t
+ [—vvék)/ e'y(ts)ds—i-v%ik)/ e ") (s — kn)ds — / / / e "=9G(w)dwdrds
kn kn

3 t t
+ lvék)/ e_w(t_s)( k;n) ds — 3' (k)/ e_w(t_s)(s — kn)gds
k kn
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+7 / / /// V=9 5(2)dzdydwdrds
kn kn Jkn

v ,yﬁ t
. IUék:)/ e —(t— 5)( kﬁ?])4d8 o y(vék) o UY{:)) / e—v(t—s)(s - kn)5d8

+ 44 v3 / / / / e V=9 ==k gy duwdrdss
kn Jkn
—75v§k)/ / / / / e F=9) e =2) gz dydwdrds
kn Jkn Jkn Jkn Jkn
t s r w Yy
— 40 <v§k) — v%k)) / / / / / e_V(t_s)e_V(y_Z)(z — kn)dzdydwdrds
kn Jkn Jkn Jkn Jkn
t s r w Yy
+fy4\/2fy/ / / / / e =92 B, dydwdrds
kn Jkn Jkn Jkn Jkn

’YQU:())k // —v(t—s) —'y k")drds—v \/_/ / / e—W(t—S)e—W(T—w)dderds
kn Jkn kn Jkn
”y%ék / // ~(t=s) g (r= wduwlrals—fyd‘vgC / / / e V=9 =) () — kn)dwdrds
kn Jkn Jkn kn Jkn Jkn
—1—74/ / / / / e V=95 dzdydwdrds
kn JknJkn Jkn Jkn
75 t s r
— Ly / / / e V=== () — kn)2dwdrds
kn Jkn Jkn
76 t s r
— a7 (vék) — UYC)) / / / e V=== () — kn)3dwdrds
3! kn Jkn Jkn
t s T w
+’y4v§k)/ / / / e’V(t’S)e’"’(T’“’)e’”(y’k")dydwdrds
kn Jkn Jkn Jkn
t s T w Yy
—75v§k)/ / / / / e_V(t_S)e_V(T_“’)e_W(y_z)dzdydwdrds
kn Jkn Jkn Jkn Jkn
t s r w Y
— 8 <v§k) —vik))/ / / / / e V=)= e=vW=2) (5 _ kn)dzdydwdrds
kn Jkn Jkn Jkn Jkn
t s T w Yy
+fy4\/2fy/ / // / e V=) e W=2) ) B dydwdrds | .
kn Jkn Jkn Jkn Jkn

Via the above equations and software to evaluate the iterated integrals, we obtain the
following result.

Lemma B.1. Recall the definition of polynomials g(t) and g(t) in (13). The following

are explicit expressions of components of Z((k + 1)n) in terms of x(¥
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(k+1)n (k+1)n
O((k +1)n / / r)drds + 7y / / / / y)dydwdrds
kn kn kn kn kn kn

+f0+9 Moo+v1 Mo1+02 M02+U3 M03,

(k+1)n (k+1)n
u((k+1)n) = —/ s)ds + / / / w)dwdrds
kn kn kn J kn

+f1+9 M10+U§ N11+U§ M12+Us H137

(k+1)n (k+1)n
U9 ((k —v/ / r)drds — / /// y)dydwdrds
kn kn kn kn Jkn Jkn

(k+1)n
-7 / / / / (s=1) y)dydwdrds + f5 + k) 20 + U; )M21 + Ué )N22 + Ué )M23,
kn kn Jkn Jkn

(k+1)n
us((k+1) :—7/ // V(E+D=9)G (w)dwdrds
kn kn Jkn
(k+1)n
+74/ /// /6_7(('““)"_S)g(z)dzdydwdrds
kn kn Jkn Jkn Jkn
(k+1)n
+ /k /k /k /k /k V((k+Dn=9) =1 =) 52\ dzdydwdrds
7 n Jkn Jkn Jkn

+ f3+ o) 30 + Ui H31 + Ué )M32 + Ué )M33

Here ;5,0 < 1,5 < 3 are the constants
foo = 1;

o 277 477 e 1 _n 77_2 _ 77_3 77_4 .
/’LOI - T] 7 3' + fy 5| + 'Y ( 75 + 5 /74 + 2’73 6'72 + 247 I
1 n”

8

2 - 3
YAy S SO N
SR TR ( T Ty 67)

5 =
4 € n n
fios = =" +7( +———+—)
5! 7 S Iy
e 1

Y A U}
Yos ot 293 692 24y
Hio = 0;
-1 277_|_4774+4€_W 1+77 n° +773 .

3 - 1
n € Ui Ui
pz = =75 73<— +t5-5+ )

4 - 1 - 1 2 3
Al e Y e T .
- 74!4”(72 72+7) 7(74 T Ty +67)’

2o = 0;




Mo1 = =N+ 5—7

3 5 e~ 1 2 3 4
37 577__75(_ N no,n ot )
e 1 2 5/ 6e M 6 6 3 3 4
_{_73(_ +__£+77_>_1(_ _|____77_{_ 77_77_4.”)

2 4 e~ 1 2 3 e~ 1
M22=1—’y2n—+’y4n—+’y4( 1 ———i—ﬂ—n——i—n—)—’yQ( ———l—ﬁ)
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5 —yn 1 2
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_ v° (120e”7 120  120n  60n 20nm on n
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5e~1M e~ 4 In? 3 4 e~ 1 e~
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SN
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Meanwhile, f;,0 < i <4 are Ito integrals defined via

(k+1)n _ _ _ (y—n(k+1))
Y k+1 yn(k +1) +~yy + 2 2e7 + 2
fO — 72 /27 ’Y( 77( ))( 77( ) )
kn

dB,;
2~3 v
(k+1)n k4 e=nk+1)) _ ~og 1
£ =2 /—27/ At ank +e . W =lip,
kn
(k+1)n _ _ _ 9p7(y—n(k+1))
Yy —nk+1)(=mk+1) +yy+2) —2e +2
fo= —73, /27y o 23 B,
(k+1)n oy(y—n(k+1)) _ 1
—7V27y / ‘ dB,
kn Y
(k+1)n 7y(y—n(k+1)) —_ —y) —
1+ nk + e 1k +1) +9(=y) +2) +y(-y) — 2
N /k (yn( = ) ) dB,:
Y

1) (k+1)n

n
6—7((k+1)n—y)dBy + 44 /2v

(k+
f3 =2y
kn

y—nk <2€v(y—n(k+1))
kn 274

(—yn(k+1) +vy —3) +9(y —n(k +1))(=m(k +1) +yy +4) + 6) dB,

(k+1)n oy(y=—n(k+1)) ( _~p (K —
yk+1)+yy—1)+1
o (=l + 1) )
k

dB,
, 72
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(k+1n 1
+7*V/2y 5 (2777(k' +1) + CED (o (y —n(k + 1))
kn

X (=ym(k +1) + 7y —4) +6) — 27y — 6) dB,.

Next is the calculation for the conditional mean and covariance associated with the
fourth-order LMC algorithm in Section 2.1.

Lemma B.2. E[2*D|z®)] is a multivariate normal distribution with mean M(z™) =
(mi)o<i<s and symmetric covariance matriv 3 = (0ij + La)o<; j<5-

The entries m;,0 <1i < 3 and 05,0 < 7,5 < 3 are provided below, noting that the constants
(fij)o<ij<3 are defined in Lemma B.1.

(k+1)n 2
o I _
my = /k ((k + 1)y T)g(r) dr G

n kn

+ Q(k)ﬂoo + Uyc)llm + Uék)lloz + U;S,k)uoza;

(k+1)n 72 n(k+1) 2
my = —/ g(s)ds + — / (w —n(k+ 1)) g(w) dw
k 2 nk

n

T (= ke 0n) ) d

+ 0% g + 08 gy + 08 g + 08 s

mgzy/k(kﬂ)n ((k:—i—l)n dr——/kJrl ( (k+1)n )3

Y

6 — 670041 4 39y — (k + 1) (2+ 9y — (k + 1)) )
7? W

+ 0% pgg + ng>/~¢21 + Uék)/vm + U:gk)ﬂ235

72 (k+1)n

m=— | (w =l + 1)) gw) duw

(k+1)n 1
+ 74/ o <2€W O (—y(k + 1)+ vz — 3)
kn 27

+(z = (k+ D) (—y(k + D+ vz +4) + 6)
+ 2 (200 + D0 = D+ Dr = A+ D+ 2(=2) =) +6)

+ 67D 6)) g(z)dz

+ 0% g + ng)ﬂm + Uék)uzn + U:(),k)u33-
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Furthermore,
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Proof. The formula for m; immediately follows from Lemma B.1, so that we only need to
show how to compute the entries of the covariance matrix. We have

E[(@(kﬂ) — E[pD[20]) (k1) — E[Q(k+1)|x(k)})—r‘x(k)] —E[fo(fo)"] = 000 Lu, (54)

where fj is defined in Lemma B.1. Then oy on the right hand side of (54) can be
computed by Ito isometry and software. The remaining covariance entries o;;’s are
obtained in the same way via E[f;(f;)"] = 0y - 4. O

Based on Lemma B.1, it possible to decompose Z((k + 1)n) into higher and lower order
terms with respect to 7, as the next lemma will show.

Lemma B.3. Recall the unique minimizer 0* of U, M(x®)) from Lemma B.2 and the
Jacobian matrix

0 Iy 0 0
. |-V, 0 v 0 .
Jp(6%,0,...,0) = 0 0 v | Then it holds that
0 0  —vla —vl4
M(z®) = 2™ 4+ 0.4,(67,0,...,0)(z® - (6,0,...,0)) + R(z™ — (67,0,...,0)),

and
2 —(07,0,...,0) = (2™ — (67,0,...,0))
+0dp(0%,0,...,0)(z® — (67,0,...,0)) + R(z™ — (6,0,...,0)) + F},

where R is a 4d X 4d matrixz with \Rij] < COn? 1<i,j <4d and C is a constant dependent

only on . Moreover, the entries f;’s of the 4d-dimensional vector Fy, = (fo f1  f3 f4)T
are defined in Lemma B.1.

Proof. Without loss of generality, let us assume that the unique minimizer 6* = 0.

First, we will rewrite j;;,0 < i,7 < 3 that appear in the formula of z((k + 1)n) in
Lemma B.1 and make explicit lower and higher order terms with respect to 7.

0 4 k 2 3 4
R G )Ry Py MM 2
—n— LA S e VA J T Y_—pn_0 .
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5 2 2 3
N m Ui Ui
o3z = —74§ TS —’74(— i —> = O(1).

2 4 0 \k 2 3
MmzﬁL_3l_:<§f’W)_ﬂ3+1>20@m

Similarly, we have
po=0, w1 =1+00"), pa2=-m+00"), ms=O00n),
foo =0, por =—m+O0Mm), p=1+00), ps=mny+O00n),
pso =0, ps1=0), ps2=—-m+00"), pss=1—m+01n).

Next, we consider the integral terms containing ¢ and g in the formula of Z((k + 1)n) in

Lemma B.1. Since VU (0*) = VU(0) = 0, we can write

(k+1)n
- / g(s)ds = —nVU(O™) + O(n*) = nV2U(0) 18" + O(n®).
kn

Meanwhile, all the remaining integral terms containing ¢ and g in Z((k + 1)n) are of the

order O(n?).

Consequently, we can deduce the equation in the statement of this lemma from the above
calculations and Lemma B.1. O

We also need the following moment bounds.

Lemma B.4. Assume

* P - =L 1
<0 =Ml 1M T

where the matriz M is provided in Fxample 2.3 and v, p, L are from Theorem 2.1. Then
there exists a positive constant Cy such that for all k,

E[‘x(k“)}?a} < (C1)*(d + 2a)7,

(55)

where C depends on ~, L from Condition HI and ¢ from Condition H2, but not on d.
This further implies

sup  E[[2(0)] + [2(t)]° + |20 + 13()° + ()] < Ca(d + 1),
te[kn,(k+1)n]

for a universal constant Cy > 1 that depends on v, L from Condition H1 and c from
Condition H2. Cs does not depend on the dimension d.

Proof. Part 1 of the proof:

Without loss of generality, let us assume 6* = 0 and denote J,(0) = J,(0*,0,...,0). Let
wy ~ N (0, I4) then per Lemma B.2 and Lemma B.3,
20¢:|

A
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(2&) UMUZM( * ))|j]EU(MZ})1/2wk 2(1]}

(e e

J
<IE [lM(m(k)) ﬁ\;] e +E U (M) 2w, 2&] l/a) 2‘”‘. (56)

Let us study the first term on the right hand side. Lemma B.3 and (8) imply that

IA

IN

QQ} 1—j/2a

IM(z®)[3, = |2 + 0 (0)2M],
— |2®2 +n(@®) " (1,0)TM + MI(0))2® + 2 ()" J,(0) M J,(0)2®
< |20, +0@®) T (=20)Ma® + 2 || J0)TMAO)], M7, |27,
< (1= 20p) |29, + 02 1012, 1M M7, [P,

At this point, notice that the operator norm is bounded from above by the Frobenius norm,
so that comblnmg with L-smoothness of U and the explicit form of J, in Lemma B.3, we
get || J,(0 )Hop <1+5v2+ L% |[M|,, and [[M~,, can be computed using the explicit
form of M in Example 2.3. Then assuming n < n* as defined in the statement of the

lemma, we arrive at
E)y |20 1/a 3 ¢ k)| 2
slpa]" < (1-5) Bl 1]

This can be combined with (56) and (20) to get the desired bound on E[‘x(k“) ‘M} :

Part 2 of the proof:

In this part, we will use the result from Part 1 and the explicit formula at the begin-
ning of Appendix B to bound sup; (i, (k1 E[12(0)[* + [Z(0)]* + [2(6)]* + 13 (0)]° + [g()[*].
The upcoming argument is rather tedlous so we will only demonstrate how to bound
SUD e oy (k1)1 E|[|oy (t)|2] By Equation (53), we can write

)

2 2 4 2
sup EUUl ( [ } +727]2Eﬂvék)‘ ] +74%<E[‘v§k)‘ } -I—]E{ U3
telkn,(k+1)n]

fn? sup E[\g(tm?).
)]

telkn,(k+1)n

Lemma 2.16 and L-smoothness of U implies

L 2
Ellgt)]” < (= sup E
al ) ieton, (k+1)n)

2

0(t)
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} + L2 sup E{
telkn,(k+1)n]
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where « is from Condition H2. Moreover, we also have from (52) and Part 1 of this proof

that
é(t)ﬁ < IE[(Q 100 v 2 ‘Ugm))ﬂ

(
1

sup [E {
te[kn,(k+1)n]

< 4E |0 —|—4]E[v

21 < 8(Ch)*(d + 2a)”.

o(t)

E[|g(t)|]* < cdn? + L*8Cy(d + 2).

o

2«
Condition H2 then says (—“) SUD e (o, (h-1)1) E[ } < cdn?. Thus, we arrive at

Hence,
sup  E[|o(8)]] < 5<1+7 n” ++* )401(d+2)+5n (cdn® + L*8C(d + 2)).
el (k+1)n) 4

This completes the proof. ([l
Next are the proofs of Lemma 2.16 and Lemma 2.17 in the main paper.

Proof of Lemma 2.16. By Condition H1 and [Car71, Theorem 5.6.2], we have
|z|*

VU (2) — Po_i(z)] < La%.

This leads to
R 2 R 2
s E|[vode) -gof | = swE[[voe) - reo) ]
te[kn,(k+1)n) te[kn,(k+1)n]
Lo\’ A
< (—a> sup EHG(t)Qa ]
al ) telhn, (k4 1)m)
2
The bound on Sup;e sy (k41)y UVU t)) —g(t) } is obtained in the same way. O

Proof of Lemma 2.17. First part of the proof: we will bound the difference of the
components of fz(t) — i’(t) in L%norm for t € (kn, (P = 1)n].

We start with o, () — 01(t) = [ ( o ) + 702(s)) ds, which combined with the moment
bounds in Lemma B 4 leads to

IE[|171(25) —1(8))?] < Cold+ 1)(y + 1)%(t — kn)>.
Next, 0(t fkn — 01(s)) ds combined with Lemma B.4 leads to

E Ué(t) — é(tﬂ < Coy(d+ 1) (v +1)%(t — kn)*.
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Moreover,
@@V—%@%_A;CW@N@—@KQW+7@ﬂ@—U@>%ﬁ-

We know 03(t) — v3 fkn —03(s) — y02(s)) ds + /27(By — By,) which along with
Lemma B.4 imply the bound

E “@3(75) - vg’“ﬂ < Cold+1)(2y + /27)2(t — kn).
Consequently,
E[|oa(t) — 0o(t)[*] < Cold + 1)(y + 1)2(t — kn)* + Cod + 1)(2y + /27)2(t — kn)®
SCg(d+1)<(7+1 (27 +V2) )t—k:n (57)

Finally, 03(t) — 03(t) = fktn —ve % (0y(s) — a(s))ds and the moment bound in Lemma B.4
imply

E[|55(t) — 63(1)%] < 02<d+1)((7+1 27+ v/27) ) t— kn).

Second part of the proof: We will bound the difference of the components of z(t) — z(t)
in L? norm for ¢ € (kn, (k + 1)n].

We start with

0 =010 = [ ~(a(s) = gds + [ () — in(s))ds

n

_ /k t (_ (as) - YU@(s)) — (VU (B(s) ~ VU B(s)

- (a0 = w0 st [ ofinte) ~ ntoas. )
The bound in (57) leads to

2

E /kv("&g(s)—fig(s))ds

n

< Cy(d+ 1)y ((7+1 (27 + V) )t—kn

Meanwhile, Lemma 2.16, Lemma B.4 and Condition H2 say

/kt (g<s) - VU(é(s))) ds

U

E

] < (%) (C(d +20)°72 < cdr®. (59)

2
Similarly, we have E Ufk ( — VU (A(s ))) ds’ } < cdn®. Also based on the first part

of the proof and L-smoothness of U in Condition H1,
2

E /k (VU(é(s)) - VU(é(s))> ds| | < Cy(d+ 1)L*(y + 1)%(t — kn)®.

n
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By combining the previous calculations, we get for any t € (kn, (k + 1)n] that

E[loy(t) - 01(t)"] < Co(d + 1)(7 (W F 124 (274 /29) ) )
Next, 0 fkn 01(s) — v1(s)) ds leads to

Q}SCQ(dH)( ((r+ 12+ 2y + V29)2) +e)or”

EUé(t> — A
Moreover, Uq(t) — Ua(t fkn —01(8)) + v(03(s) — 03(s))) ds leads to

Efloo(r) ~ 2(0)[7] < 02(d+1)72(7 (('Y—i- 1)2 4+ (27 + \/27) ) )
+Co(d+ 1)y ((7+ L@+ VD) )

Finally, 05(t) — v3(t) = flfn —ve~7%(09(s) — Ua(s))ds implies
E[Jos(t) - 35(6)'] < Cald+ 1)y (12((7+ 1 + @1+ v29)%) + <)’
+ Co(d + 1)y ((7+ + (27 +v/27) )

This completes the proof. O

APPENDIX C. DETAILS OF P-TH ORDER LANGEVIN MONTE CARLO ALGORITHM

The following is a generalized version of Lemma B.1.

Lemma C.1. Choose any positive integers i and j in [1, P — 1]. Then

1. the auziliary process {v (t),t > 0} in Section 2.2 has the form
¢
B0 = S A0+ 000 + Loy [ 1G04,

1<e<P—-1 kn

1
such that
a. The kernel b (s, t) is deterministic and has the form
h:tj(s,t) = Z aLmebl’m(t_SHCl*m(s — kn)®rm, (61)
0<m<M;

where M is a positive integer; dy s are non-negative integers; ai m, b1m, Cim s
are rational functions in variables k,n,~,t, i.e. they are ratios of multivariate
polynomials in k,n,v,t. 3

3The coefficients a1,m,b1.m, €1,m and dj ,, on the right hand side of (61) depend on i, j; however we
hide this dependence to lighten the notations. We do the same thing in Equation (62) and Equation (63).
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t,
b. 7 (t) has the form
st
A > ag e mTEITem (f — fpydem, (62)
0<m<Ms
where My is a positive integer; agm,bam,Cam’s are rational functions in

variables k,n,v; and da,,’s are non-negative integers.

c. n:tg (s,t) is deterministic and has the form
jtg (s,t) = Z ag petdm =S teamd, (s), (63)
0<m<Mj

where M3 is a positive integer; ds,,’s are polynomial in S; a3m,b3m,C3m s
are rational functions in variables k,n,~v,t, i.e. they are ratios of multivariate
polynomials in k,n,y,t.

2. the auxiliary process {6°% (t),t > 0} in Section 2.2 has the form
¢

()= D> o ) + 0P uEe () + Lgopo / Wiy (s, )dB,

1<¢<pP—1

+ 2 / Kpy(s, g (s)ds,  (64)

such that ppe(t) has a similar form to (62), while b5y (s,t) and /{jﬁfe(s,t) have
similar forms to respectively (61) and (63).

Proof. We will employ an induction argument.

Step 1: Stage j = 1.

We will verify that v5"(¢),1 < n < P — 1 and 6*'(¢) have respectively the general
forms (60) and (64).

We have vj" (t) = U%k) so that
01 (1) = 1" (¢ = o),

and
t
o () = vy = / o (s)ds + oy (= k) = v — 5 (t = k)t + y0i” (¢ — k).
kn
(65)
Proceed similarly for increasing n to get for 3 <n < P — 2,
t
vt (t) = (k) - 'Y/ nti(s)ds + 7U7(L 1(t—kn) = Zaﬁ — kn) dzvz )> (66)
kn

where a,’s are polynomials in v and d,’s are non-negative integers. If we set /ftl( ) =

ae(t — kn)? then this coefficient is of the form described in the statement of the lemma.
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Moreover, the formula (66) in the case n = P — 2 implies

¢ ¢
vty (8) = e TR, —V/k e L, (s)ds + /2 . e =94B,
i n

" P-1 t
77(757]@17)1}5_521 + /2,)// e*’Y(tfs)dBS _ Zvék)’ﬂf/ ef’Y(tfs)<8 _ kn)deds.
kn =1 kn

Via integration by parts, it is easy to see
t
/ e =) (s — kn)dds = Z e 1k g, S (t — kn)des, (67)

where dy ;’s are non-negative integers and ay ;’s are polynomials in 7. Setting

/ﬁgl ) z(t) = yay Z eiV(t*k”)a[’j(t _ kTI)dZ,j,
J

for 1</<P—2and

Hptypoy(t) == yap- 1267 Dap_yj(t — kn)tr=1s 4 e
we arrive at

VR (1) = /2 / e =9)4B, +ZU€ [y (1) (68)

Finally, notice that among 65" (t) and v*%(¢),1 <n < P — 1, the It6 integral only appears

in v5',(t), which explains the indicator functions in (60) and (64) when j = 1.

Step 2: Stage j = 2.

We will verify that v5%2(¢),1 < n < P — 1 and 6*2(¢) have respectively the general
forms (60) and (64).

We have based on (65) that

t
v (1) = ol /k g**(s) ds+’y/k V3" (s)ds
1
t —kn)? t —kn)?
— Ul /k gStQ Ek)( 2 Tl) + 722]:())]?)( 77) ) (69)

n

This implies
t
02(t) = o — / v (s)ds

t—kn)3 t—kn)3
_ o) _ // 2(5y)dsydss — 73v§k)( n) +720§k:)( 77)’
kn Jkn 6
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noting that fk °2 g*2(s1)dsdsy = fl:n<t — $1)g°"2(s1)ds1. Per the previous calculations
(69) and (66) in the case n = 3, we can further write

t t
V32 (t) = vék) — fy/k V3 (s)ds + v/k V3 (s)ds
"

n
! t—kn)* t —kn)?
= ol + (—76)““) +7/ (t — s1)g*(51)dsy + 44 LR i (IR AL i ) )
k,r] . .
P-1
(t — kn)ositt
+ (VZW%( 'bsi(7) )
=1 )

which is of the form described in the statement of the lemma. Proceed similarly for
increasing n,3 < n < P — 3 to get

t t
ﬁ%w:<“—v/ W(Q%+v/lmﬂ$%
k kn

U

t Sn So
= Pt + 0% +%LA:mAsﬁ@Mam@mwm<w
n n n

1<e<pP—1

where e, are rational functions in variables k,7,v. Moreover, the last term can be
simplified as

t Sn 52
en/ / e / g (s1)dsy ... ds,_1ds,
kn J kn kn
t t Sn S3 t
= en/ / / / G*(s1)dsy . .. ds,ds; = / p(s1)g°"(s1)dsy,
kn Js1 Js1 S1 kn

where p is a polynomial in s;.

Next, we have

t t
v?dﬂ—vﬁa—véiﬁa(ws+vé1$H®M&
mn mn

sto

We will only expand the term fk vp24(s)ds using (70) when n = P — 3. The term

f; v (s)ds can be handled in similar fashion using (68):

t
[t ==+ 5o [ o [ isa
n

U 1<e<pP-1
/ / p(s1)g°"(s1)ds dsy,
so=kn Js1= kn

where we can further compute that

/ / g**(s1)ds dsy = en/kn / g***(s1)dsqds;
so=kn Js1= k’r]

=e¢A@—sQMam *(51)ds1.
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Hence, we arrive at

sto
UpZo(t)
t t
k) s s S s s
= > 0+ 0 )+ [ B 0B+ [ (s g (s)ds
1<¢<P—1 kn kn
as described in (60).
Finally, we have
t
V32 (t) = e~ V(t=kn)y, (k)l — ’y/k e vf:fQQ Yds + /2y B..
"

The second term on the right hand side can be expanded by plugging in the formula for
v52,(s), then applying (67) and the fact that fk S e_V(t 3)e= V251 B dsydsy =
83— 83) ,—Y(s2—s e (t 51) s1e”7(t—s1) e~ 7(t—s1)
fle fsl f e d)e 7(er—en ds?ds3dBS1 - fkTI(_ N 772 1 + = v’y - W’Y : )stm
and also that fk 2 e 172 (1) g% (1) dsydsy = f,:n Stl e 1=52)p(51) g2 (s1)dsads, =

fkn 1/y)e 7= sl)p(sl)QStQ(sl)dsl. Consequently, v32 | (¢) can be written as (60).

Finally, we note that among 65'2(t) and v$%2(¢),1 < n < P — 1, It6 integrals only appear
in the formulas of v? | (t) and v, (), which explains the indicator functions in (60) and

(64) when j = 2. Thls completes the proof for Stage j = 2.
Step 3: Induction argument.

As the induction hypothesis, we assume the statement of the lemma holds for Stage j
and verify Stage j + 1. The proof is similar to Step 2 above (proceeding from Stage 1 to
Stage 2) and is therefore omitted. U

Lemma C.2. E[:L’(Hl)\x(k)] follows a multivariate normal distribution in RF? whose
mean vector and covariance matriz can be determined from Lemma C.1.

Proof. Lemma C.1 provides us with the formulas for the components z*+1) = gstr-1((k +
1)n). Based on those formulas, we can see that E[z*™1|z®] follows a multivariate normal
distribution in R”?. From there, calculating the mean and covariance is straightforward
and is the same as the proof of Lemma B.2. O

The following is a general version of Lemma B.3.
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Lemma C.3. Recall the unique minimizer 8* of U and the Pd x Pd Jacobian matriz

04 I Of oo e e e 0y

—VUQ(Q*)Id 04 vIg 04 04

0y SN ) PR S| PO 0y

i 04 Oa  —vda 0¢ g 00 -+ -+ 04
Jo(#7,0,....,0) = 04 04 O¢  —vda O0s ~vla 04  --- Oq
0y s PR PR

0y P | PSSy

Then it holds for Stage j,1 < j < P —1 that
(1) = (0°,0,...,0) = (&) — (6%,0,....,0)) + (¢ — kn)Jo(6",0,....,0)
(@ (8,0,..,0) + RO E - 0,0,,0) +E), (1)

where R(t) is a Pd x Pd matriz with |R;;| (t) < C(t —kn)?*, 1 < 4,5 < 4d and C is
a constant that depends only on v, P. Moreover, Fy(t) is the Pd- dimensional vector

(fp(t) A1) fo8) f3() - fpoa(t)" where for each i, fi(t) fk t)dBy is

the d-dimensional Ito integral defined in Lemma C.1.
Consequently, we have
2™ —(97,0,...,0) = (2™ — (67,0,...,0)) + nJy(67,0,...,0) (=¥ — (6,0,...,0))
+ R((k+ ) (2™ — (67,0,...,0)) + F((k + L)n).  (72)
Proof. Since z+t1) = z5tr-1((k + 1)n), it is sufficient to prove (71). Without loss of

generality, we assume the unique minimizer of U is 8* = 0. The proof follows an induction
argument.

Step 1: The Base Case j = 2.

Per the proof of Lemma C.1, we can deduce that

¢ ¢
v (t) = v%k) —/k g***(s)ds —i—v/k v3 (s)ds

Y Y
t
=" — (t = kn)VEU(0)0™) + (t — kn)od” + O((t — kn)?) D ol + / 5% (s, t)dBs.
i#1,2 kn
Next, we have
t
652 (t) = 4% +/ V3" (s)ds
kn
= 9% 1 (¢t — ko™ + O((t — k)?) / B2 (s, £)d
z;él kn
Similarly,
t t
0 = o =y [ s+ [ atsas
kn kn



= o) — (t = kn)yoly + (t — kn)yol,
t
+O((t — kn)?) Z vi(k) + / hs*2(s,t)dB,, 2<n<P-—2;
¢{n—1,n,n+1} ken

k k k
vty (1) = vfy = (= kn)yol, — (¢ — )yl
t

+O(t—kn)?) > vﬁ’“)+/ 2 (s,t)dB,.
k

i¢{P—2,P—1} N
At this point, we can conclude (71) holds for Stage j = 2.
Step 2: The Induction Argument.
We assume (71) is true up to Stage j and verify Stage j + 1. The argument is similar to
the one in Step 1 and is therefore omitted. The proof is complete. O

The upcoming moment bounds are similar to the ones in Lemma B.4.

Lemma C.4. Assume

_1 1

°° 1+ (14 (P—2)2)y2+ L%
where the matriv M and v, p, L are from Theorem 2.1. Then there exists a positive
constant Cy such that for all k,

E[}x(’fﬂ)f“} < <51>a(d+2a)0‘,

<= E MG M (73)

where C, depends on P and v, L from Condition H1 and c from Condition H2, and not
on d. This further implies

sup sup E |:|U;tj<3)|2 + ‘0:“]'(3”2] + sup sup E[‘gstj(3)|2]
1<j,n<P~1 sekn,(h+1)n) 2<I<P=1 selhn, (k+1)1]
S 62<d + 1)7

for a universal constant Cy > 1 that depends only on P,~v and L.

Proof. Similarly as how we apply Lemma B.3 to get the moment bounds in Lemma B.4
in Lemma B.4 for fourth-order LMC algorithm, we can apply Lemma C.3 to derive the
moment bounds for P-th order LMC algorithm. The proof is very similar to the proof of
Lemma B.4 and is therefore omitted. 0]

Proof of Lemma 2.24. Step 1: j =1
We start with v (¢) — v%k) =0,t € (kn, (k+ 1)n]. Next,

t
() = o = [ (=) 4 ) ds.
kn
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2 2 2
sup E[ V3 (t) — o) } < nPy? (E[ v§k)’ } +E “vék) 1) < C5™dn?.
)]
te(kn,(k+1)n] te(kn,(k+1)n]
along with Lemma C.4 imply

te(kn,(k+1)n
Proceed similarly for increasing n with 3 < n < P — 2 to obtain
(k) ‘ZD
n+1
S Cstl an
sup E {

which combined with the second moment bounds in Lemma C.4 lead to
sup E[‘vffl(t) — v,(f)ﬂ < 17272< sup [‘US“ t)| ] + E[
Next, we have v3! (t) = UP .+ fkn< Yo, (s )+7UP 1) ds + v/27(B; — By,) which
te(kn,(k+1)n]

st1 ® |? st1
vply(t) —vp 1‘ < Cplydn.

Finally, Lemma C.4 implies

2
sup E[‘@Stl(t) — Q(k)ﬂ <n*4* sup E “v%k)‘ } < C5rdn’.
)]

te(kn,(k+1)n] te(kn,(k+1)n
Step 2: j=2and P=3

We have v5' (1) —vi" (t) = v5* () fkn (—g°"2(s) + 15" (s)) ds so that by Lemma C.4,
sup [|vSt2 t) — vitl(t)ﬂ
te(kn,(k+1)n]
<n’  sup E[Igm(t)ﬂ +7°n*  sup [!vs“ t)] ] <G (T4)

te(kn,(k+1)n) te(kn,(k+1)n)

Moreover, v32(t) — v3" ( fkn ( v (07 (s) — v (s)) + fy(U?,tj(s) — vék)(s)>> ds so that
using (74) and the calculatlon in Step 1, we get

sup B[ [o3(t) - 5" (]| < G,
te(kn,(k+1)n)

Finally, by (74), we get
sup  E[|o(t) e "] < swp B[ (0) - o (1)) < C5an'.

te(kn,(k+1)n) te(kn,(k+1)n)
Step 3: j=2and P >4
In the same way as (74), we get
sup B[ |o1(t) — o1 ()] < G, (75)
te(kn,(k+1)n]
Next, (75) and the calculation in Step 1 imply that
sup B[y (t) - o ()]

te(kn,(k+1)n]
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<o s (B[l - e 0f] + 2|
te (kn,(k+1)n]

2
o5 (t) — of?) D < C3dn.
Proceed similarly for increasing n,3 < n < P — 3 to obtain

sup B[ (t) = v ()]
te(kn,(k+1)n]

< s (B[ - )] +E|
te(kn,(k+1)n)

s k
ntil( ) — Uﬁwzl

2
D < CS2dnt. (76)
Furthermore, (76) and the calculation in Step 1 lead to

sup B [[ui2,(t) — vty ()]
te(kn,(k+1)n)

< 77272 sup ( “Ustg (t) —U;;tl?)( )‘ } +E[

1)
te(kn,(k+1)n]

<n*y?  sup (C’f‘gt2 ,dn® + C32 dn) < C%2,dn. (77)
te(kn,(k+1)n]

We also have from (77) that

sup  E[ui2, (6) — vty ()]
te(kn,(k+1)n)

s k
) = oy

2

< sup E
te(kn,(k+1)n)

< CzsatfldUS- (78)

t
o [ - o)
k

n

Finally, (75) implies

swp  E[|02(t) — 0 ()] <07 sup  B[foi(0) - o ()] < Can”
te(kn,(k+1)n] te(kn,(k+1)n]

This completes the proof. O

Proof of Lemma 2.25. We will prove the formulas in Parts a), b), ¢) and d) for Stage j > 3
via induction. We will assume P > 4, since there is no Stage 3 when P = 3.

First half of the proof: checking the base case j =3
The first half of the proof will consist of four steps.

Step 1: Verifying Part a) for Stage j = 3.

We have

= [ (- ) - TUe) - (FU(Ee) - VU e o)
— (VU (6) - () s+ [
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(v52(s) — v3" (s)) ds.
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so that by L-smoothness of U,

sup |:‘Ust3 ) o ,UStz (t) |2:|
te(kn,(k+1)n]

<n’  sup )n]( [!g“* — VU (°2(t ))ﬂ +E[|VU(est1(t))—gstz(t)\z}

te(kn,(k+1
+ LZE [0 (s) — 0 (O[] + 7|05 (1) — 05" ()] > . (79)
Note the third and last terms on the right hand side in (79) are bounded in Lemma C.4 as

E[|98t2(8) - QStl(t)ﬂ < C%*dn? and [’vsm t) — v (t )ﬂ < C52dn*.

Regarding the first two terms on the right hand side in (79), similar to the argument
at (59), Condition H2 indicates there exists a positive constant ¢ such that

sup <]E [|95t3 (t) — VU (6" (t)) ﬂ +E “VU(@S“(t)) — g (t)ﬂ) < cdn®t 1

te(kn,(k+1)n)

Thus, we get
sup E[\uitB(t) e (t)ﬂ < O3 gy, (80)
te(kn,(k+1)n)
Next, we have v5?(t) — v5"( fkn (= (vi®(s) — vi(s)) + v (v5?(s) — v5"(s))) ds, so
that

sup E[@;tg(t) — o3 (0)[*]
te(kn,(k+1)n)

<off sup (B[ - o=@ + [ -t off]). s
te(kn,(k+1)n)

The first term on the right hand side in (81) is bounded at (80), while the second term in
(81) is bounded in Lemma 2.24 as E UUStQ — oy (t )|2] < C3*dn*. Then
sup B[ |o3(t) — o5 (]| < 5o, (82)
te(kn,(k+1)n]

Now proceed similarly for increasing n with 3 <n < P — 4 and we get

sup “vm t) —v3(t )ﬂ < Csdp®, 3<n< P-4 (83)

te(kn,(k+1)n]

Step 2: Verifying Part b) for Stage j = 3.
We use (83) in the case n = P — 4 and Lemma 2.24 to get

sup B [[o2 () — vj2(t)[°]
te(kn,(k+1)n]

<ot swp (B[, () — v 0] + B[00 - o))
te(kn,(k+1)n]
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<7’ (Clsgi4d776 + 0?32773) < CJSDtisdnE)- (84)

Step 3: Verifying Part ¢) for Stage j = 3.

Using (84) and Lemma 2.24, we can write

sup | [052,(8) — 032,(0)|]
te(kn,(k+1)n)

<ot (B[ 0 - o0+ B0 - 0
te(kn,(k+1)n]

< PP (Cp2ydn® + Cp2 gy P-D72070) < Ot

)

Now proceed similarly for increasing n, P — j < n < P — 2 and we get

sup [‘Ustg (£) — vtz 2(t)|2] < (OBta gy 3+ 2—(P=2)) — (sta g 114202 (85)
te(kn,(k+1)n)

Finally, the bound in (85) in the case n = P — 2 implies

sup | [of2,(8) - 032, ()]
te(kn,(k+1)n)

< sup E
te (kn,(k+1)n]

¢ 2
‘_7/ e (0%32(5> - U%Q 2(5))d5 ] < Cgildng- (86)
k

U

Step 4: Verifying Part d) for Stage j = 3.
By (80), we have

sup  E[[0) - 0@ <0 sup  E[[uP () - o= 0)]°] < cpran®

te(kn,(k+1)n] te(kn,(k+1)n)

Second half of the proof: the induction argument

The second half will also consist of four steps. As the induction hypothesis, we assume
Part a),b),c) and d) of the current Proposition are true up to Stage j.

Step 1: Verifying Part a) for Stage j + 1.
We have
Stj+1 t) ’UStj (t)

stj+1 B gstj(s)) n ,y(v;tj(s) — v;tj*1(8)>> ds

A
-1,(-

(9771 (s) = VU (6% (s))) — (VU (67 (1)) = VU (67 (s)))

i

(VU@ (9) = ) ds 4 [ ) _v;ws))ds,
60



so that by L-smoothness of U, we obtain:

sup E [
te (kn,(k+1)7]

<n? sup (E[‘g“ﬂl(t) — VU(6*(t)) !2] +E DVU(@StJ () — gStf*I(t)‘z}

te(kn,(k+1)n)

+ L2E[[6° (s) - 0% ()] + ﬂ@{

vs? (8) — v (t) ﬂ ) : (87)

The third and last terms on the right hand side in (87) are bounded respectively by Part
d) and Part a) of the induction hypothesis:

. ) . 2 ) .
E|[6(s) — 05 (1)*] < Cpran*2 and E[:viﬂ@>-—z§%1@>\] < C37dn™.

Regarding the first two terms on the right hand side in (87), similar to the argument
at (59), Condition H2 indicates there is a positive constant ¢ such that

tE(k:}(llEi-l)n] (E[‘gstj+1(t) — VU (6% (t)) |2] 4 EDVU(Qstj(t)) _ gstj,l(t)‘QD < cdi?P1.

Since for 1 < 7 < P — 1, we have 2j < 2P — 1, the above calculations lead to

sup [E [
te(kn,(k+1)n)

Nexct, we have o5 (£)=05 () = fi, (=7(017" () =01 () + 7 (57 () = 577 (9)) ) s,
so that

2 .
Uithrl (t) o Ustj (t)’ :| S Oitj+1dn2j+2- (88)

2
s B[+ )~ o o)
te(kn,(k+1)n]
st st 2 st st 2
<o s (8]0 o] | +]jaro - aol]).
te(kn,(k+1)n]

The first term on the right hand side is bounded at (88), while the second term is bounded

2 .
per Part a) of the induction hypothesis as E Uvgtj(t) () ] < C57dn¥. Then

sup

2 .
IE[ vy (t) — vy (t)] ] < O3t dntR, (89)
te(kn,(k+1)n]

Now proceed similarly for increasing n with 3 <n < P — j — 2 and we get

sup E [
te(kn,(k+1)n]

L 2 .
vwww—ﬁwﬂ}SQ%WWH,BSnSP—J—z (90)

Via (88), (89) and (90), we confirm via induction that Part a) of this Proposition is true.

Step 2: Verifying Part b) for Stage j + 1.
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We use (90) in the case n = P — j — 2 and Part b) of the induction hypothesis to get

2t - st 2
sup |50 = (0
te(kn,(k+1)n)]
2 92 stj1 st 2 st stj—1 2
<7 sup E UP—j—Q(t) - UP—j—Q(t) +E UP—j(t) —Up_; (t)
te(kn,(k+1)n)
< P (OR3P ) < O (91)

Thus, Part b) of this Proposition is true.
Step 3: Verifying Part ¢) for Stage j + 1.

Using (91) and Part ¢) of the induction hypothesis, we can write

, 2
sup E[ U;tﬂjjl(t) — v;tj_j(t)’ }
te(kn,(k+1)7]
2 2 Stj+1 Stj 2 Stj Stj_l 2
<7 sup E||lop™5 () —vp’; ()] | +E||op’ ;1 (t) —vp’ iy ()
te(kn,(k+1)n]

< 22 <C«]S;Ci4‘;l_2dn2j+1 4 C]S;ijn4j+2(P—j+1)—2P—1> < O}s}tgldnzﬁg

Now proceed similarly for increasing n, P — j < n < P — 2 and we get

sup ]E|: Uj;t.jj;-l (t) - U?ij (t) ‘2:| < CthJrl dn2j+3+2(n7(Pfj)) — Citj+1 dn4(j+1)+2nf2P71.
te(kn,(k+1)7]
(92)
Finally, the bound in (92) in the case n = P — 2 implies
st sty 2

sup B lop” () —vply(t)

te(kn,(k+1)n]
t 2 4

gswﬁhﬁ%MMWWMQWWﬂ (93)

te(kn,(k+1)n] kn

By (92) and (93), we conclude via induction that Part ¢) of this Proposition is true.
Step 4: Verifying Part d) for Stage j + 1.
By (88), we have

i 19 2 1 ]
sup E[\HS”“@) - 33‘”’@)}2] <n* sup E{ V() — o) (t)‘ } < Cprdn ™,
te(kn,(k+1)n] te(kn,(k+1)n]
so that Part d) of this Proposition is true. This also completes our induction argument.
The estimate for Stage P — 1 of the Proposition is straightforward given the previous
results and the results in Lemma 2.24. This completes the proof. 0J

Proof of Theorem 2.19. O
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APPENDIX D. CHOICE OF POLYNOMIAL APPROXIMATION

In this appendix, we expand on Remark 2.14 regarding the difficulty in applying La-
grange polynomial interpolation to our MCMC algorithm based on fourth-order Langevin
dynamics.

Recall from [MMW™21, Section 3.3] and also from [SBB*80], the Chebyshev nodes on the

interval [kn, (k + 1)n] are s; = kn+ (1 + cos(%=2m)),i =1,2,...,. Then the (a — 1)-

degree Lagrange polynomial associated with a Ré-valued path ¢ € [kn, (k + 1)n] — 2(t) is
¢-(t) =iy 2(s) [ L=% The error estimate when z has up to a-th order derivatives
7 [

is ([SBB*80, Section 3.1])

(87

a4
dte

sup  |z(t) — ¢.(2)| < Sa-igy . SU
te(kn,(k+1)n) - telkn,(k+1)n)

z(t)‘ . (94)

Coming back to our MCMC algorithm based on fourth-order Langevin dynamics, we need
to approximate the path

)t VU(H(k) F(t— kn)v§’“>), (95)
and also the path

palt) : 5 VU(é(t)), (96)

where

t s
0(t) = 0" + v§’“) (t —kn) — / / VU(H(k) + (r— kn)v§k)>drds
kn J kn

t — kn)? t —kn)?
+W§k)( 2'77) _'_72<U§k)_vik)>( 3‘77)‘

Lagrange polynomial interpolation of the path p; in (95) has been done in [MMW™21]

by defining ¢;(t) := > i, VU(G(k) + (s — kn)v%k)> [Tz st;Tss, Note that ¢;(t) is a poly-

nomial of degree av — 1 in ¢, and the error sup,ep, 1)y [P1(t) — g1(¢)| is bounded in
IMMW 21, Section 4.3.2] using (94) as

«

n
sup  [pu(t) — 1(6)] < 5oy  sup
te[kn,(k+1)n] Q- tekn,(k+1)n)

< 771 sup ‘VO‘U@U‘:) + (t — kn)v§k)>v§k)’ :
2071l s, (k1))

dCM
& vule® _ (k)
T U(@ + (t — kn)v; ) '

We observe that this bound is simple since ¢ +— %) 4 (¢ — kn)v@ is a linear function in ¢,
so that second and higher derivatives of ¢ s %) 4 (¢ — kn)v%k) immediately vanish.

Meanwhile, we can approximate the path ps by defining

[0}

ga(t) = Z vu(T(s) ][]




where

t s
T(t) = 6% + v%k) (t—kn) — / / g1(r)drds
k

kn Jkn
NI —2/‘“7)2 472 o) (t —;77)3'
From (94), we get
U ot
a0~ TUTON S gty [=vvao)]

In particular, the fact that g¢;(¢) is a polynomial of degree a — 1 suggests T'(t) is a
polynomial of degree o + 1. We use Faa Di Bruno’s formula to get

a—1

v = ¥ U gt [T (o) L on

Mea-1 Hi:l mat i=1

where M, 1 := {(m1,...,mq_1) : m; > 0and 3% 'im; = a — 1}. Since T(t) is not a
linear function and is a polynomial of potentially high degree, most terms in (97) does

not vanish, which makes the error bound quite challenging.

APPENDIX E. EXTRA CALCULATIONS FOR THE NUMERICAL EXPERIMENTS

E.1. Quadratic loss function. In this section, we consider the case where the loss
function U(0) is quadratic. Consider the mean-squared error in a regression problem
with Ridge regularization.If we have a training dataset Z = {z1, 29, , 2, }, with z; =
(Xi,y:),i = 1,2,--+ ,n. Here, X; € R? is a d-dimensional input and y; € R is the
one-dimensional output. Then the potential (loss) function is defined as

n

Z (vi — QTXz')2 + %|9‘2 =

=1

1
2

1

U(0) 7

A
jy — XOP + S |0, (98)

The gradient of the loss is then given by
1

1 1 1 1
VU(9) = —EXT(y — X0)+ M\ = EXU(@ — EXTy + M = (EXTX + )J) 0 — EXTy.

(99)
Define A = (1 XTX 4+ XI) and b = L XTy. Then VU(6) = A0 — b is linear in 6.

Third-order computation: Now we are ready to get an explicit form of the vector
AU(6,v;) used in equation (43) for the third-order dynamics

n n 2
AU(@, U1) .= / VU(@ + tUl)dt = / [A(9 + t’Ul) - b] dt = A (779 + %U1> — b?]
0 0

Fourth-order computation: We use the following version of the formulas to compute

the mean vector components m;s’ which are the expanded forms of the formulas presented
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in Lemma B.2. Note that, except for 0, vy, v, and vs3, all other variables used in the
computation processes are dummy variables.

(k+1)n s r w
—/ / VU 0+ (r —kn)v — / / VU0 + (y — kn)vy)dydw
kn kn kn J'kn

—k — kn)?
+702% +’7 ( U1 +03)%> deS

(k+1)n r w
+ / / / VU0 + (y — kn)vy)dydwdrds
kn kn Jkn Jkn

+ 100 + v1pt01 + Vafto2 + Vsflos.
Let us split the integral into small parts, we have

(k+1)
moy = —/ VU(Q —|— (’I“ — l{?n)Ul — T1 + TQ)deS —|— T3 —|— T4,
k

n kn
where

T, = / VU0 + (y — kn)vy)dydw,
k

n Jkn
(r — kn)? (r — kn)?
3! ’

Ty = v + 7’ (—v1 + v)
(k+1
T3 = / /// VU0 + (y — kn)vy)dydwdrds,
kn

Ty = Opoo + viftor + Vaftoz + V3fios-
This implies

mo = 0 + o101 + o2V + [Lo3Us
2 4

+(ZZ 2>@M—Wy+%ﬂAMO—w)

54,2
nmy n
Av —AA
+(60 6) vt g AtAv) -

where we used pgp = 1. Next,

n°y?
24 120

(s — kn)?

(k+1)n
mf:—/‘ VU<H+m@—%m /u/YNf9+Ov kn)or) dwdr + yvs——0
: !

0
( (k+1)n
+ % (—vy +v3) ———— |ds + / / VU (0 + (w — kn)vy) dwdrds
kn kn J kn

+ Opio + Vit + vapaz + V3.
Split the integral into smaller parts, we have
(k+1)
mlz—/ VU(0+(S—]{?77)U1—T1+T2)dS+T3+T47
k

n
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where

T, = / VU (0 4 (w — kn)vy) dwdr,
k

n J kn
(s — kn)?
2!

(s — kn)?
3

(k+1)n  ps  pr
T3 = 72/ / VU (0 + (w — kn)vy) dwdrds,
k kn J kn

Ui
Ty = Opqo + v1pe11 + vapbia + V33,

Ty = vy + 7% (—v1 + v3)

which implies

n’*y? Uk
my = ,unvl + ,ulgvg + ,u13v3 —f- ( 6 — 7’]) (AH — b) + EA(AQ — b)

4.2 2 4 3 4.2
ny Ui Ui nry ny
) Ao+ T A(An) = T Ay - T4
+( 12 2) ’U1+24 ( 'U1) 6 () 24 V3,

where we used 19 = 0. Next, we compute ms as follows:

(k+1)n ps rorw
my = 7/ / VU (9 + vy (r — kn) — / / VU<9 +(y - kn)v1>dydw
kn kn kn Jkn

r — kn)? r—kn)?
gl Q!m (o) 3!n))drd8

(k+1)77 S r w
- / / / / VU<Q +(y - kn)v1>dydwdrds
kn kn Jkn Jkn
(k+1)77 s r w
_ P / / / / e—ws_r)vU(@ 4y — kn)m)dydwdrds
kn kn Jkn Jkn

+ Opioo + v1pta1 + Vapiag + Vspios.

Split the integral into smaller parts. Define

T, = / / VU<9 + (y — kn)m)dydw
kn Jkn

(r—kn? (r — kn)?
2—' +’Y <—U1+03>—3'

(k+1)n  ps pr pw .
T3 = —73/ / / / VU<9 + (y — k:n)vl)dydwdrds
k kn Jkn Jkn

U

(k+1)n ps pr prw
T, = —* / / / / e 1TIYU (9 + (y — kn)m)dydwdrds
k kn Jkn Jkn

n
T5 = Opigo + V1121 + Vapion + Usflos.

T = yvo

Then the integral becomes

(k+1)n ps
mzzfy/ VU0 + (r — kn)vy — 11 + Ty)drds + T5 + Ty + T
k

U] kn
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1—e™ ™ 4.3 34,2
:M2101+M22U2+M2303+( S/t +7727—77>(A‘9_b)
0 24 6
4 5.3 4.2 3 2 —
n*y ny? oty oy ot oo 1—em
T TAAD = b (— — — L ———)A
o1 (Al )+ 60 24 T3 275 42 (Aur)
5 4.3 5.3
7 n'y n°y
T AA T (A T A
190 (AlAv)) + = (Ava) + To 5 (Avs),

where we used o9 = 0. Finally,

(k+1)n  ps  pr
ms = —? / / / o= ((k+1)n—3)
kn kn J kn
(w — kn)*

w oy
-VU <9 + (w — kn)vy — / / VU(H +(z— k;n)vl)dzdy + YU

— kn)3
+’Y2(—U1 +U3)(IUT7]))dwd7”d8

(k+1)n ps pr pw  py
4ot / / / / / e*’ﬂ(k“)’?*SWU(e +(z— kn)m)dzdydwdrds
kn kn Jkn Jkn Jkn
(k+1)n  ps pr pw  py
+ 74/ / / / / 677((“1)’7’3)6’7(’"’”)VU(9 + (2 — kn)vl)dzdydwdrds
kn kn Jkn Jkn Jkn

+ Opizo + V131 + Vafiza + Usfiss.

Denote
wopy
Tl—/ / VU(Q—i—(z—kn)vl)dzdy,
kn Jkn
w — kn)? w — kn)?
TQZ’}/UQ%‘F’YQ(—Ul‘{”Ug)%,

(k+1)n s r w y ‘
Ty =~" / / / / / 6_7((’““)’7‘5)VU<0 + (2 — kn)v1>dzdydwdrds,
kn kn Jkn Jkn Jkn

(k+1)n  ps pr pw  py
T, =~ / / / / / 6—7((k+1)n—s)6—"/(r—w)VU<0 + (z — kn)v1>dzdydwdrds,
kn kn Jkn Jkn Jkn

T5 = Oz + vi 31 + Vapize + Vsliss.

Then the integral becomes

(k+1)n ps pr
ms = _72/ / / e V=T (0 + (w — kn)vy — Ty + Ty)dwdrds
kn kn Jkn
+ 15+ T, 4+ Ts.
Re-arranging, we have

m3 = U31V1 + U32V2 + U333

4.3 -
U _ 4(1—em)
St 3 ny - -~~~ - 7/

+(24 n”y+n(3+e ™) >
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2

4 3 _
nty oon?oom n l—e™
+<——E+———+—3>A(A9—b)

2

24 2y v v
(e,

where we used pusp = 0.

E.2. Logistic loss function. Similar to the quadratic case, let us assume that we have
an input data set X € R™4 an output dataset y € {0,1}", and 6 € R being the model
parameters or weights. Then the predicted probability for the i-th sample y; = 1 is

1
14+e =

where z; = X,'0 € R and o(z2) is a real-valued function. However, if 2 = X6 € R™ then
we define the vector-valued sigmoid function as

()= (] ! (101)
o\zZ .—1+€?Z = 1—}—6721’.”714—6*'271 .

Therefore, for a two-class classification problem, we define
P(y; = 1|X;0) = 9 = 0(3719)7
Ply; =0/ X;;0) =1 —¢; =1 —0o(X,6).

Then for a given y;, the probability of taking one of the classes, we combine the above
equations (102) into a single equation

P(yi| Xi; 0) = 4 (1 — 9:)' 7" (103)
For the independent and identically distributed (i.i.d.) data we define the loss

o(z) =Py =1X;;0) = = Us; (100)

(102)

£(0) = [ [Pl Xis0) = [T (1 =)',
i=1 i=1
which implies
log L(0) = Z [vilog(g:) + (1 — y;) log(1 — )] -
=0

We take the negative of log likelihood as the probabilities are often smaller numbers. Then
we define the potential function with a penalty term (i.e., Ly or Ridge regularization),

U(6) =~ 3 [y log(i) + (1 ) log(1 — )] + 5 107

=0
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= =3 llog(o(z0)) + (1 = i) log(1 — ()] + 5161

Therefore, the gradient of the regularized loss function in vector form would be
VUO) = XT(§—y)+ M0 =X"(F(X0) —y) + N\, (104)

where & is defined in (101). The detailed derivation of VU (0) in (104) will be given in
Lemma E.1.

The fourth-order sampling process requires the computation of the integral of the gradient
fot VU(6 + tvy) for any t € [0, n]; however, for a non-polynomial or black-box potential, it
is quite hard or sometimes impossible to compute the exact integrals. Thus, in this case,
we approximate the integrals using Taylor Series expansion.

For the Taylor expansion, let us define,
2(t) := X(0 + tv)) = X0 +tXv; € R", s(t) :==ad(=(t)) € R,
where ¢ is defined in (101). Furthermore, we define
wt) = VU@ +tvy) = MO +tvy) + X (F(X(0+tv)) —y) = A0 +tvy) + X (s(t) —y).

Now we expand w(t) in the Taylor series for ¢ = 0 up to a 3rd-degree polynomial to
approximate the integrals in the sampling process.

t? t3
w(t) = w(0) + ' (0)t + w”(O)E + w”’(O)E + O(th). (105)
The next steps are the computation of the derivatives. First, the constant term in (105)
is given by
w(0) =M+ XT(F(X0) — ). (106)
We can compute that the first derivative is given by
ds(t)
"t) =\ XM =Z).
w( ) U1 + ( dt )
Moreover,
ds(t)
dt
which implies

=0(2(1) © (1 =a(2() © (Xor) = s(1) © (1 = (1)) © (Xvy),  (107)

W () = dor + XT [s(t) ©1—st)o (le)},

and in particular,

(0) = oy + XT [s O1—s) 0 (le)] . (108)
We can compute that the second derivative is given by
d
W) = X2 [F(=(6)(1 = 3(2(t) © (Xvn)]. (109)
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Since s(t) = d(z(t)), we can compute that s'(t) = s(¢)(1 — s(t))(Xwv1). Then we have

%[S(t)(l —s(t)] = ()1 = s(t)) — s(t)s'(t) = s(t)(1 — s(t))(1 — 25(¢))(Xv1).  (110)

Plugging (110) into (109), we obtain,
(1) = X" [5(6) © (1= 5(1) © (1= 25(8)) © (Xvn) ® (Xuy)]
which implies
W'(0)=X" [s O1=5)01-25)06(Xv)O (le)]. (111)
We can compute the third derivative is given by

w"(t) = XT% [s(£)(1 = (1)) (1 = 2s(2)) © (Xv1) © (Xvy)] .-

Using the results in equation (107) and equation (110), we obtain:

d
7 101 = (1)) (1~ 2s(1))]

= (00 = )1 - 2560 + s [~ s0)(1 - 250)] ) ()
= (s()(1 = s(t) (1 = 6s(t) + 6[s(1)]*)) (Xvn),
which implies
W0y =X" [s O(1—8)®(1—-6s+65*)0 (Xv)o (Xv)©® (X"Ul)] (112)

Substituting (106), (108), (111) and (112) into (105), we get the Taylor expansion of the
gradient function,
w(t) =M+ X T(s —y)
+ [Mor + XT(s0(1-506 (Xw))]t

+ XT<5@(1—s)@(l—Qs)@(le)G)(le))]g
4 |xT (s ©(1—s) O (1—6s+6s%) O (Xv1) O (Xvy) @ (le)> % O,

where s = 0(X0) € R" and ® is the elementwise (Hadamard) product. We can rewrite
w(t) as

1
(,d(t) = VU(@ + tvl) = )\0 + MO + (M1 @ (X?Jl) —|— )\Ul)t + §(M2 @ X’U1 @ XUl)t2

1
+ 6<M3 © Xv © Xy @Xm)t?’,

My=X"(s—y), M=X"(s0(-s)),

MFXT<5@(1_5)@(1—23)), M3:XT<3®(1—5)®(1—63+632)>,
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and all {M;}?_, € R? and s = ¢(X0) € R™.

Fourth-order computations: Once we have the Taylor expanded form of VU (6 + tv;)
(i.e., w(t)), the calculation processes are the same as the quadratic function. We use
standard mathematical software Mathematica 12.0 to compute those nested integrals and
obtain the following results.

2.4 44\2 2 2.5 512 3
YA AT A YA AT A
= — 9 —
mo ( 5+ ox 5 +u00) +( st 10 o T HoL | v

4 2,.5 2.4 4 2

YA YA YntoonA
_ _ A NN\
+(“°2 24)”2+(”°3 120)”3+<24+24 2) 0

2,5 5\ 3 2,6 6\ 4
+<’777 +77__77_)M1®le+<777 +n——n—)M2®X01®XU1

20 120 6 720 720 24

1
(A e X o X o X
5040 | 5040 120/ B AnrEATIOALL

312 2.4 4\2 2
n°A YA AT A
5 + 5 77/\)9+( 15 + o1 5 + p11 | v1

3)\ 24)\ 2,3 3/\
M12_777 >U2+(M13—7n >U3+(V77 +n__77)MO

5

E
I
7N
2
%)
3
w
>

24 6 6

2,5 5

' omA
T2 TN My o Xu, 0 X

120 120 6) 2@ AU O AN

- ) Mo xu (

4
/yn _|_T]__77_) Mg@XUIQleG)XUlJ

2)\ A= 4+ 39?2 — 6yn — 67" + 6
:<_777 (V2 + A — 12) + (=’n 77767 n — Ge )>9

VPN 2P0+ PA —=20) A (="t + 4%° — 129707 + 249 + 2477 — 24)
_ N N
120 242

24)\ 35/\
7 —1-/122)02-1-(777 +M23>U3

i 24 120

+

_t (PP AP = 12) 0’ = 390 4 6ym 4 Ge M - 6
24 6 0
(74174 — 433 + 129292 — 24yn — 24e7 7" + 24 B o (72772 P — 20)

+

M o X
2442 120 > LOAn

Lt O A= 30) Lme L s o ot
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Lemma E.1. Define the potential (loss) function with a penalty term (i.e., Ly or Ridge
reqularization):
- ) A
u() =— Z [yilog(g:) + (1 — yi) log(1 — 4;)] + §|9|2

= =3 lulog(o(z0)) + (1~ yi)log(1 — ()] + 51617

Then the gradient of the reqularized loss function is given as

VU@) = XT(§—y) + 20 = X" (F(X0) —y) + A

Proof. To make the calculation easier, we consider the non-regularized elementwise gradient
of the loss. Additionally, we use the recursive property of the sigmoid function % =
o(2)(1 — o(z))X; € R% Thus,
VU(0) == [4:iVolog(o(z:) + (1 — y:) Vo log(l — o(2))]
i=1
1 d 1 d
== i———50(z) — (L —yi) - 0%
3 [y ) =) (e

=1

n
%

= =3 (1 = o)X - (1= o)1~ o)X

= L olz)

=Yl o)X~ (1 ) - (1 - ()X

n

2

[=4i(1 = o) Xi + (1 — ;) - (1 = 0(2)) Xi]
=1

> llo(z) — vi) X
i=1

= (0(z1) =) X1 + (0(22) —92) Xo + -+ + (0(20) — o) X
Therefore, the gradient of the regularized loss function in vector form would be
VU@) = XT(§—y) + 20 = X" (F(X0) —y) + \.
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