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Abstract. Langevin algorithms are popular Markov chain Monte Carlo (MCMC)
methods for large-scale sampling problems that often arise in data science. We propose
Monte Carlo algorithms based on the discretizations of P -th order Langevin dynamics
for any P ≥ 3. Our design of P -th order Langevin Monte Carlo (LMC) algorithms
is by combining splitting and accurate integration methods. We obtain Wasserstein
convergence guarantees for sampling from distributions with log-concave and smooth
densities. Specifically, the mixing time of the P -th order LMC algorithm scales as

O
(
d

1
R /ϵ

1
2R

)
for R = 4 · 1{P=3} + (2P − 1) · 1{P≥4}, which has a better dependence on

the dimension d and the accuracy level ϵ as P grows. Numerical experiments illustrate
the efficiency of our proposed algorithms.

1. Introduction

Langevin algorithms are popular Markov chain Monte Carlo (MCMC) methods to sample
from a given density µ(θ) ∝ e−U(θ) of interest where θ ∈ Rd, and these sampling problems
appear in many applications such as Bayesian statistical inference, Bayesian formulations
of inverse problems, and Bayesian classification and regression tasks in machine learning
[GCSR95, Stu10, ADFDJ03, TTV16, GGHZ21, GIWZ24]. The classical Langevin Monte
Carlo algorithm is based on the discretization of overdamped (or first-order) Langevin
dynamics [Dal17, DM17, DK19, RRT17, BCM+21, CMR+21, EH21, ZADS23, BCE+22]
that follows the stochastic differential equation (SDE):

dθt = −∇U(θt)dt+
√
2dBt, (1)

where U : Rd → R is often known as the potential function, and Bt is a standard d-
dimensional Brownian motion with θ0 ∈ Rd. Under some mild assumptions on U(·),
the diffusion (1) admits a unique stationary distribution with the density µ(θ) ∝ e−U(θ),
also known as the Gibbs distribution [CHS87, HKS89]. In computing practice, this
diffusion is simulated by considering its discretization, and one of the most commonly
used discretization schemes is the Euler–Maruyama discretization of (1), often known as
the unadjusted Langevin algorithm in the literature; see e.g. [DM17]:

θk+1 = θk − η∇U(θk) +
√

2ηξk+1, (2)

where ξk are i.i.d. N (0, Id) Gaussian vectors.

In a seminal paper, [Dal17] obtained the first non-asymptotic result of the discretized
Langevin dynamics (2); later, [DM17] improved the dependence on the dimension d. Both
works consider the total variation (TV) as the distance to measure the convergence. In
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contrast, [DM19] studied the convergence in the 2-Wasserstein distance, and [DMP18]
studied variants of (2) when U is not smooth. [CB18] studied the convergence in the
Kullback-Leibler distance. [EHZ22] obtained the convergence in chi-squared and Rényi
divergence. [DK19, RRT17, BCM+21, CMR+21, ZADS23] studied the convergence when
only stochastic gradients are available.

In the literature, many variants of the overdamped Langevin dynamics and the discretiza-
tion schemes have been studied. One popular Langevin dynamics is the underdamped
Langevin dynamics, also known as the second-order or kinetic Langevin dynamics, see e.g.
[MSH02, Vil09, CCBJ18, CCA+18, CLW21, CLW23, DRD20, GGZ20, MCC+21, GGZ22]:{

drt = −γrtdt−∇U(θt)dt+
√
2γdBt,

dθt = rtdt,
(3)

where Bt is a standard d-dimensional Brownian motion with r0, θ0 ∈ Rd. Under some mild
assumptions on U , the SDE (3) admits a unique stationary distribution with the density

µ(θ, r) ∝ e−U(θ)− 1
2
|r|2 [EGZ19], whose θ-marginal distribution coincides with the stationary

distribution of (1). It is known that the second-order (underdamped) Langevin dynamics
(3) might converge to the Gibbs distribution faster than the first-order (overdamped)
Langevin dynamics [EGZ19, CLW23], and the discretization based on the second-order
Langevin dynamics might have better iteration complexity, in particular, with a better
dependence on the dimension d and the accuracy level ϵ [CCBJ18, GGZ22].

In the recent literature, higher-order, in particular, the third-order Langevin dynamics
and its discretization have been proposed and studied in [MMW+21]:

dθt = pt dt,

dpt = − 1
L
U(θt) dt+ γrt dt,

drt = −γpt dt− 2γrt dt+
√

4γ
L

dBt,

(4)

where γ > 0 is the friction parameter, L is the smoothness parameter of U and Bt is a
standard Brownian motion in Rd. Under some mild assumptions on U , the SDE (4) admits

a unique stationary distribution with the density µ(θ, r) ∝ e−U(θ)−L
2
|p|2−L

2
|r|2 [MMW+21].

They showed that a Langevin Monte Carlo algorithm based on the discretization of the
third-order Langevin SDE (4) can have even better iteration complexity in terms of
dependence on the dimension d and the accuracy level ϵ compared to the algorithm based
on the second-order Langevin SDE (3) [MMW+21].

It is thus very natural to ask if one can propose and study a more general P -th order
Langevin dynamics, and whether its discretization can lead to better iteration complexity.
In the very recent probability literature, a generalized Langevin dynamics is studied in
[Mon23]. Their result is in continuous time only. The focus of our paper is to propose
and study the iteration complexity of an algorithm based on the discretization of the
continuous-time P -th order Langevin dynamics, which we name P -th order Langevin
Monte Carlo (LMC) algorithm. In the context of log-concave sampling via the Langevin
equation and its variants, Table 1 compares the mixing time of our P -th order LMC
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References Assumptions on potential U Mixing time in Wass2

[CCBJ18, DRD20, MCC+21] convex-smooth O
(

d1/2

ϵ

)
[SL19] convex-smooth O

(
d1/3

ϵ2/3

)
[MMW+21] ridge-separable, convex-smooth O

(
d1/4

ϵ1/2

)
[MMW+21]

strongly convex O
(

d1/4

ϵ1/2

)
and smooth up to order α +O

(
d1/2

ϵ1/α−1

)
Our
Theorem
2.19

convex-smooth O
(
d

1
R/ϵ

1
2R

)
, where

and Condition H2 R = 4 · 1{P=3}
+(2P − 1) · 1{P≥4}

Table 1. Summary of assumptions and iteration complexities in our paper
compared with the literature.

algorithm in Theorem 2.19 with the mixing time of other algorithms from the references
in the literature1. Also note that the convex-smooth condition is our Condition H1.

Our contributions can be summarized as follows.

• We construct P -th order LMC algorithms that are based on discretizations of
P -th order Langevin dynamics for P ≥ 3. Under the condition that the potential
function U is convex, sufficiently smooth and the operator norm of the derivatives
of U do not grow too quickly, we show that the iteration complexity of our P -th

order LMC algorithm scales as O
(
d

1
R/ϵ

1
2R

)
for R = 4 · 1{P=3} + (2P − 1) · 1{P≥4}.

Our iteration complexity result therefore has a better dependence on the dimension
d and the accuracy level ϵ as P grows. We therefore provide a positive answer to a
conjecture in [MMW+21, Section 5] that one can construct LMC algorithms based
on high-order Langevin dynamics that reduce the dependence of the iteration
complexity on the dimension and the accuracy level.

• Inspired by existing work on second- and third-order Langevin Monte Carlo algo-
rithms [CCBJ18, MMW+21], we propose and rigorously study novel discretization
schemes for high-order Langevin dynamics that contain several stages of refine-
ment, and each stage adopts a splitting scheme to ensure that the conditional
expectation of the vector formed by the variables in each stage (conditioned on
the last stage) follows a multivariate normal distribution. A natural question is
what the maximum number of refinement stages one can design, which affects how
much improvement one can obtain in iteration complexity. We discover that the
maximum number of stages is P − 1 (see Remark 2.15 and Remark 2.22).

1For comparison purpose, we focus solely on the dependence on d and ϵ of the rates in the cited
references in the table. These references improve other aspects of log-concave sampling which we do not
cover here.
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• We perform numerical experiments and compare the performance of the third- and
fourth-order LMC algorithms. In particular, we study sampling from the posterior
distribution of the model parameters in Bayesian regression using real data, where
the loss function is quadratic. Our numerical results show better performance for
the fourth-order LMC algorithm. In addition, we consider a sigmoid loss function
for sampling from the posterior distribution of the model parameters in Bayesian
classification problems, using real data, which demonstrates the efficiency of our
proposed algorithm.

The rest of the paper can be summarized as follows. In Section 2, main results are stated.
We first provide some preliminaries for the continuous-time P -th order Langevin dynamics
and state our main assumptions. In Section 2.1, for pedagogical purpose, we introduce
and study the fourth-order LMC algorithm, and then in Section 2.2, we extend our results
to any P -th order LMC algorithm for P ≥ 3. We conduct numerical experiments to show
the efficiency of our algorithms in Section 3. In Section 4, we conclude. Further technical
details will be provided in the Appendix.

2. Main Results

In this section, we first present an important result regarding convergence toward equi-
librium of (continuous-time) P -th order Langevin dynamics, that is established by Mon-
marché in [Mon23]. Let us start with some definitions.

Let P, d ≥ 1. A P -th order Langevin dynamics has the form

dXt = AYtdt,

dYt = −A⊤∇U(Xt)dt− γBYtdt+
√
γdWt, (5)

where W is a standard (P − 1)d-dimensional Brownian motion; U ∈ C2(Rd); while the
d× (P − 1)d matrix A and the (P − 1)d× (P − 1)d matrix B are given by:

A =
(
Id 0 . . . 0

)
and B =


0 −Id 0 . . . 0

Id 0 −Id
. . .

...

0
. . . . . . . . . 0

...
. . . Id 0 −Id

0 . . . 0 Id Id

 .

Regarding notations, set b as the drift coefficient of (5), that is

b(x, y) =

(
Ay

−A⊤∇U(x)− γBy

)
, (6)

and denote Jb as its Jacobian matrix.
4



Next, we set

λ̂ = min{Re(λ), λ is an eigenvalue of Bsim}, where Bsim :=


0 −1 0 . . . 0

1 0 −1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 0 −1

0 . . . 0 1 1

 ,

noting that B = Bsim ⊗ Id where ⊗ denotes the Kronecker product. Also,

κ =

{
λ̂, when B is diagonalizable,

λ̂− ϵ, ϵ ∈
(
0, λ̂
)
when B is not diagonalizable.

We show in the proof of Corollary A.5 that λ̂ > 0, which implies κ > 0.

Denote the Jordan blocks of Bsim by Bn, 1 ≤ n ≤ N . Each block Bn of length ℓn is

associated with the eigenvalue λn and the set of generalized eigenvectors v
(k)
n ; 1 ≤ k ≤ ℓn.

In particular, v
(1)
n is the (standard) eigenvector of Bn. Notice here we slightly abuse

notations as we are using the same notations Bn, ℓn, v
(k)
n for the matrix B in Appendix A.

For a Jordan block Bn with Re(λn) > κ, we set

Hn =
ℓn∑
i=1

binv
(i)
n

(
v̄(i)n

)⊤
,

where v̄⊤ denotes the conjugate transpose of a vector v and

b1n = 1; bjn = cj(tn)
2(1−j), 2 ≤ j ≤ ℓn; (7)

c1 = 1; cj+1 = 1 + c2j , 2 ≤ j ≤ ℓn; tn = 2
(
Re(λn)− λ̂

)
.

Meanwhile, for a Jordan block Bm with Re(λm) = κ, we define

H̃m(ϵ) =
ℓm∑
i=1

bim(ϵ)v
(i)
m

(
v̄(i)m

)⊤
,

where bim’s are the same as in (7), except that we replace the above tn with tm =

2(Re(λm)− λ̂+ ϵ) for any ϵ ∈ (0, λ̂) and write bim = bim(ϵ) to emphasize the dependence

on ϵ. Now, assume I = {n ∈ {1, · · · , N} : ℓn ≥ 2,Re(λn) = λ̂} and set

H(ϵ) =
∑

n∈{1,...,N}\I

Hn +
∑
m∈I

H̃m(ϵ).

Next, we define

h1 =

∥∥∥∥∥∥∥H(ϵ)

1 · · · 0
...

. . .
...

0 · · · 0


∥∥∥∥∥∥∥
op

, h2 = h3 = 1,

h4 =

(
1 +

P − 1

2

)∥∥H(ϵ)−1
∥∥
op
, h5 = (1 + P )

∥∥H(ϵ)−1
∥∥
op
.
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Regarding the potential function U , we assume that

Condition H1. U is m-strongly convex and L-smooth: mId ≤ ∇2U(x) ≤ LId for any
x ∈ Rd.

The following important result is established by Monmarché in [Mon23]. Further details
are provided in Theorem A.4 and Corollary A.5 in Appendix A.

Theorem 2.1. (a shortened version of Theorem A.4 and Corollary A.5) Assume the
setup above for the P -th order Langevin dynamics (5), including Condition H1 on the
potential function U . If the friction γ is sufficiently large:

γ ≥ γ0 := 2

√
h1L

κ
max

{√
h2h5,

√
h4

κ

}
,

then the Pd×Pd matrix M :=

(
1 1

γ

(
1 . . . 1

)
1
γ

(
1 . . . 1

)⊤ κ
Lh1

H(ϵ)

)
⊗Id is symmetric, positive

definite and satisfies

MJb + J⊤
b M ≤ −2ρM, ρ = min

{
m

3h3γ
,
γκ

6

}
. (8)

In particular, ρ = ρ(γ, L, P ) and γ0 = γ0(γ, L, P ) depend on γ, L, P but not on the
dimension parameter d. Furthermore, λmin,M = λmin,M(P ) and λmax,M = λmax,M(P ) are
respectively the smallest and largest eigenvalues of the positive definite matrix M , and
they depend on P but not on d.

Remark 2.2. Condition H1 is exactly Condition F in Appendix A specified for the P -th
order Langevin dynamics (5).

Example 2.3. Here we demonstrate how to find γ0 and M in Theorem 2.1 in the

case P = 4. The matrix B =

0 −1 0
1 0 −1
0 1 1

 is diagonalizable. It has eigenvector

v1 ≈ (−0.877 − 0.745i,−0.785 + 1.307i, 1) corresponding to eigenvalue 0.215 + 1.307i,
v2 ≈ (−0.877 + 0.745i,−0.785 − 1.307i, 1) corresponding to eigenvalue 0.215 − 1.307i
and v3 ≈ (0.755,−0.430, 1) corresponding to eigenvalue 0.570. Then the matrix H is

approximately

 3.341 −1.004 −0.999
−1.004 4.850 −2.000
−0.999 −2.000 3.000

 with eigenvalues (approximately) 6.168, 4.098

and 0.924. From there, one deduces h1 ≈ 3.341, h4 = 2.705, h5 = 5.410, κ = 0.924 and we

know beforehand that h2 = h3 = 1. Thus, we have γ0 ≈ 2
√

3.341L
0.215

· (3.547) and

M ≈


1 1/γ 1/γ 1/γ

1/γ (1/L)0.924 −(1/L)0.278 −(1/L)0.276
1/γ −(1/L)0.278 (1/L)1.341 −(1/L)0.553
1/γ −(1/L)0.276 −(1/L)0.553 (1/L)0.830

⊗ Id.
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In the upcoming part, we will assume a strengthened version of Assumption 2 in
[MMW+21] about the potential function U . This strengthened assumption will en-
sure that we can approximate the nested integrals in Lemma B.1 with reasonable accuracy,
and ultimately allow us to construct an MCMC algorithm with a better discretization
error (with respect to the dimension d and the accuracy level ϵ) than [MMW+21]. We
note that in the case where U is not a polynomial or a piece-wise polynomial function,
the upcoming condition basically asks that supx∈Rd ∥∇αU(x)∥op does not grow too fast
as α increases.

Condition H2. Let the stepsize η and the dimension d be fixed. There exists a positive
real number c that does not depend on the dimension d and a positive integer α large
enough such that U is in Cα and(

Lα

α!

)2(
C̃1

)α
(d+ 2α)α ≤ c · d ·

(
1{P=3}η

4 + 1{P≥4}η
2P−1

)
,

where Lα := supx∈Rd ∥∇αU(x)∥op. C̃1 given in Lemma C.4 is a positive constant that
depends only on the friction parameter γ and the smoothness parameter L, but not on
the dimension d or the stepsize η.

Remark 2.4. We observe that Condition H2 is satisfied whenever U is a polynomial
of some degree k, since we can take α = k + 1 so that ∇αU ≡ 0. This is the case with
quadratic loss function in our numerical experiments for Bayesian linear regression (our
Section 3.1). More generally, one can consider a polynomial regression problem [Jun22,
Section 3.2].

Remark 2.5. In the case where U is not a polynomial, an example is the regularized
Huber loss function that is U(x) := U0(x) +

λ
2
|x|2 for some λ > 0, where

U0(x) :=

{
|x|2
2

if |x| ≤ α,

α |x| − α2

2
otherwise,

for some positive parameter α ([SC08, Page 44]). In fact, for this example, we do not
need to verify Condition H2 since the latter is to ensure we can approximate the nested
integrals in Lemma B.1 (a fact pointed out in the paragraph before Condition H2).

Remark 2.6. In the case where U is not a polynomial or a piece-wise polynomial function,
Condition H2 basically asks that supx∈Rd ∥∇αU(x)∥op does not grow too fast as α increases.
This Condition as stated is quite hard to verify however. Hence, an example of a condition
that implies Condition H2 and is easier to check than the latter is: there exists an integer
K ∈ N and real numbers c, β > 1 such that for every k ≥ K,

sup
x∈Rd

∥∥∇kU(x)
∥∥
op

≤
√

cΓ(k/β + 1)dk, (9)

where Γ(·) is the gamma function. Then, since

lim
k→∞

cΓ(k/β + 1)d2kC̃k
1 (d+ 2k)k

(k!)2
= lim

k→∞

c
√

2πk
β
( k
βe
)k/βd2kC̃k

1 (d+ 2k)k

2πk(k
e
)2k

= 0,

7



for any fixed β > 1 and d, where we applied the Stirling’s formula Γ(x+ 1) ∼
√
2πx(x

e
)x

as x → ∞, the parameter α in Condition H2 is guaranteed to exist. Finally, we note that
(9) is similar to the assumption in [WWJ16, Theorem 3.3] in the context of accelerated
gradient methods in optimization.

Remark 2.7. Our Condition H2 is much stronger than Assumption 2 in [MMW+21],
even though both are roughly about the smoothness of the loss function U . The reason is
as follows. The mixing time of our P -th order LMC algorithm is determined by the error
in our discretization scheme of a P -th order Langevin dynamics. As it will be clear from
our proofs, the discretization error is a sum of two parts: the first part being the error of
a splitting scheme, and the second part being the error of a polynomial approximation.
As P increases, we can show that the former gets smaller; however, we cannot do the
same for the latter. Thus, in order to obtain an improvement of the discretization error
as P increases, one must assume some condition for the polynomial approximation error
to be dominated by the splitting scheme error. Condition H2 ensures this outcome.

Remark 2.8. In practice, even when condition (9) or Condition H2 is not satisfied,
our P -th order LMC algorithm might still work well; see, for example, our numerical
experiments for Bayesian logistic regression (Section 3.2).

2.1. Fourth-order Langevin Monte Carlo Algorithm.

2.1.1. Fourth-order Langevin Monte Carlo algorithm. Given the iterate x(k), the next
iterate x(k+1) is obtained by drawing from a multivariate normal distribution with mean
M(x(k)) and covariance Σ, both of which are stated in Lemma B.2.

The proof of the next result is presented at the end of Section 2.1.3.

Theorem 2.9. Assume Equation (10) satisfies Conditions H1 and H2. Let a be any
positive constant satisfying

a ≤ min

{
m

3γ
,
γκ

6

}
λmin,M ,

where the positive definite matrix M and the constants γ,m,L, κ are from Section 2.
Denote µ the invariant measure associated with the fourth-order Langevin dynamics (10).

Choose a 2-Wasserstein accuracy of ϵ small enough such that η0 :=
(

ϵ2

2C1d

)1/7
< min{η∗, 1

h
}

where h is defined in Proposition 2.18 and η∗, C1 are from Lemma B.4. Suppose we run our
fourth-order Langevin Monte Carlo algorithm with stepsize η0, then Wass2

(
Law(x(k∗)), µ

)
≤

ϵ, where k∗ is the mixing time of the fourth-order Langevin Monte Carlo algorithm with
respect to µ that is given by

k∗ = log

2C4EZ∼µ

[∣∣Z − x(0)
∣∣2]

ϵ2

(2C3)
1/7

h

d1/7

ϵ2/7
− 1,

where C3, C4 are positive constants that depend on γ, L, c but do not depend on the
dimension parameter d.

8



Remark 2.10. Our mixing time rate of O
(

d1/7

ϵ2/7

)
improves upon the rates in [MMW+21]

in terms of both d and ϵ dependencies. For instance, [MMW+21, Theorem 1] has a mixing

time rate of O
(

d1/4

ϵ1/2

)
.

2.1.2. Derivation of the discretization scheme. Consider the fourth-order Langevin dy-
namics:

dθ(t) = v1(t)dt,

dv1(t) = (−∇U(θt) + γv2(t)) dt,

dv2(t) = (−γv1(t) + γv3(t)) dt,

dv3(t) = (−γv2(t)− γv3(t))dt+
√

2γdBt. (10)

Remark 2.11. The equation (4) in our introduction (Section 1) is studied in [MMW+21]
and contains two parameters (namely γ and L in their paper) compared to our equation (5)
that contains only a single parameter γ. We make such an assumption out of convenience
and our paper is able to handle extra parameters as in [MMW+21], and this is explained in
Appendix A. Specifically in Equation (46) in Appendix A, we can take A = − 1

L
(Id, 0, . . . , 0)

and Σ =
√

4
L
Ip.

Below we will write |·| for the Euclidean norm and |·|M for the M -norm |x|M =
√
x⊤Mx.

The numerical scheme for fourth-order Langevin dynamics consists of three stages: updat-
ing x(k) to x̂(t), then updating x̂(t) to x̃(t), then updating x̃(t) to x̄(t) (for t ∈ [kη, (k+1)η]).
Each stage adopts a splitting scheme.

Stage 1: Set the initial value

x̂(kη) :=
(
θ̂(kη), v̂1(kη), v̂2(kη), v̂3(kη)

)
= x(k).

For t ∈ (kη, (k + 1)η], let

v̂1(t) = v
(k)
1 ,

and

dθ̂(t) = v̂1(t)dt,

dv̂2(t) =
(
−γv̂1(t) + γv

(k)
3

)
dt,

dv̂3(t) = (−γv̂2(t)− γv̂3(t))dt+
√
2γdBt.

Stage 2: Set the initial value x̃(kη) = x(k). For t ∈ (kη, (k + 1)η], let

dṽ1(t) = (−g̃(t) + γv̂2(t)) dt,

and

dθ̃(t) = ṽ1(t)dt,

dṽ2(t) = (−γṽ1(t) + γv̂3(t))dt,
9



dṽ3(t) = (−γṽ2(t)− γṽ3(t))dt+
√
2γdBt,

where g̃(t) is a polynomial (in t) of degree α − 1 and approximates ∇U(θ̂(t)), and g̃(t)
will be defined in (13) below.

Stage 3: Set x̄(kη) = x(k). For t ∈ (kη, (k + 1)η], let

dv̄1(t) = (−ḡ(t) + γṽ2(t)) dt,

and

dθ̄(t) = v̄1(t)dt,

dv̄2(t) = (−γv̄1(t) + γṽ3(t))dt,

dv̄3(t) = (−γv̄2(t)− γv̄3(t))dt+
√
2γdBt,

where ḡ(t) is a polynomial (in t) of degree α − 1 and approximates ∇U(θ̃(t)), and ḡ(t)
will be defined in (13) below.

Finally, set

x(k+1) = x̄((k + 1)η). (11)

Definitions of g̃(t) and ḡ(t): Recall U is a map from Rd to R, so that ∇U is a map
from Rd to L(Rd,Rd) where L(Rd,Rd) is the space consisting of bounded linear maps
from Rd to Rd. Per [Car71, Page 70], the Taylor polynomial of degree α − 1 which is
associated with ∇U and centers at the origin is

Pα−1(x) =
α−1∑
k=0

∇kU(0)

(k − 1)!
xk−1, (12)

where per [FA89], ∇kU(0)
(k−1)!

xk−1 =
∑

i1+...+id=k−1
1

i1!...id!
∂kU

∂x
i1
1 ···∂xid

d

(0)xi1
1 . . . xid

d .

This allows us to define

g̃(t) := Pα−1(θ̂(t)); ḡ(t) := Pα−1(θ̃(t)), (13)

where

θ̂(t) = θ(k) + (t− kη)v
(k)
1 ,

and

θ̃(t) = θ(k) + v
(k)
1 (t− kη)−

∫ t

kη

∫ s

kη

g̃(r)drds

+ γv
(k)
2

(t− kη)2

2!
+ γ2

(
v
(k)
3 − v

(k)
1

)(t− kη)3

3!
.

Remark 2.12. The definitions of ḡ and g̃ in (13) require finding multivariate Taylor
polynomials, which is a challenging task in itself. One can use numerical software to
help with this, for example, by using MapleTM ([Red12]) or the calculus package in R
([Gui22]).

The next result is a consequence of Lemma B.1 and Lemma B.2 from Appendix B.
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Proposition 2.13. E
[
x(k+1)|x(k)

]
= E[x̄((k + 1)η)|x̄(kη)] follows a multivariate normal

distribution with mean M(x(k)) ∈ R4 and covariance Σ ∈ R4×4. The explicit forms of
M(x(k)) and Σ are stated in Lemma B.2.

Remark 2.14. The authors of [MMW+21] propose an MCMC algorithm based on third-
order Langevin dynamics. In the case where U is a general potential function and not ridge
separable, an important step in their algorithm is the Lagrange polynomial interpolation
step ([MMW+21, Section 3.3]) to approximate the path s 7→ ∇U

(
θ(k) + (s− kη)p(k)

)
for

given vectors θ(k), p(k) in Rd and s ∈ [kη, (k+1)η]. There seems to be some major difficulty
in applying this Lagrange polynomial interpolation step to our MCMC algorithm based
on fourth-order Langevin dynamics, which pushes us to use Taylor approximation of ∇U
instead. We further explain the difficulty of using Lagrange polynomial interpolation for
our algorithm in Appendix D.

Remark 2.15. One cannot add another stage to the above discretization procedure of
the fourth-order Langevin dynamics, since it is unclear how to implement the resulting
algorithm in that case. The reason the current algorithm which is based on a three-
stage discretization procedure can be easily implemented is that per Proposition 2.13,
E
[
x(k+1)|x(k)

]
= E

[
x̄((k + 1)η)|x(k)

]
is a multivariate normal distribution. Now suppose

that we add another stage of the discretization procedure:

Stage 4: Set x̌(kη) = x(k). For t ∈ (kη, (k + 1)η], let

dv̌1(t) = (−ǧ(t) + γv̄2(t)) dt,

and

dθ̌(t) = v̌1(t)dt,

dv̌2(t) = (−γv̌1(t) + γv̄3(t))dt,

dv̌3(t) = (−γv̌2(t)− γv̌3(t))dt+
√
2γdBt,

where ǧ(t) := Pα−1(θ̄t) is a polynomial (in t) of degree α− 1 and approximates ∇U(θ̄(t)),
noting that Pα−1 is the multivariate Taylor polynomial given in (12). Per Lemma B.1,

θ̄(t) has the general form F (k, η, γ, t) +
∫ t

kη
G(k, η, γ, s)dBs, so that θ̌(t) is approximately

θ(k) −
∫ t

kη

∇U

(
F (k, η, γ, s) +

∫ s

kη

G(k, η, γ, r)dBr

)
ds+ γ

∫ t

kη

v̄2(s)ds.

In the case where U is not a quadratic potential function, the presence of the term

∇U
(
F (k, η, γ, s) +

∫ s

kη
G(k, η, γ, r)dBr

)
on the right hand side suggests that E

[
θ̌(t)|x(k)

]
may not be multivariate normal, which makes the algorithm difficult to implement.
Consequently, we do not have more than three stages in our discretization procedure.

2.1.3. Proofs. We need a few technical lemmas whose proofs are placed near the end of
Appendix B. First, we quantify how well g̃(t) and ḡ(t) respectively approximate ∇U(θ̂(t))

and ∇U(θ̃(t)).
11



Lemma 2.16. Under Conditions H1, it holds that

sup
t∈[kη,(k+1)η]

E
[∣∣∣∇U(θ̂(t))− g̃(t)

∣∣∣2] ≤ (Lα

α!

)2

sup
t∈[kη,(k+1)η]

E
[∣∣∣θ̂(t)2α∣∣∣],

sup
t∈[kη,(k+1)η]

E
[∣∣∣∇U(θ̃(t))− ḡ(t)

∣∣∣2] ≤ (Lα

α!

)2

sup
t∈[kη,(k+1)η]

E
[∣∣∣θ̃(t)2α∣∣∣].

where Lα := supx∈Rd ∥∇αU(x)∥op.

Next, we bound the differences in L2-norm of variables of two consecutive stages.

Lemma 2.17. Under Conditions H1 and H2, it holds for t ∈ (kη, (k + 1)η] that

E
[
|v̄1(t)− ṽ1(t)|2

]
≤ C2(d+ 1)

(
γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
+ c
)
η5;

E
[∣∣∣θ̃(t)− θ̄(t)

∣∣∣2] ≤ C2(d+ 1)
(
γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
+ c
)
η7;

E
[
|v̄2(t)− ṽ2(t)|2

]
≤ C2(d+ 1)γ2

(
γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
+ c
)
η7

+ C2(d+ 1)γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
η7;

E
[
|v̄3(t)− ṽ3(t)|2

]
≤ C2(d+ 1)γ4

(
γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
+ c
)
η9

+ C2(d+ 1)γ4
(
(γ + 1)2 + (2γ +

√
2γ)2

)
η9.

The upcoming result bounds the discretization error of the numerical scheme (11).

Proposition 2.18. Assume Equation (10) satisfies Conditions H1 and H2. Let a be any

positive constant satisfying a ≤ min
{

m
3γ
, γκ

6

}
λmin,M , where the positive definite matrix

M and the constants γ,m,L, κ are from Section 2. Denote µ the invariant measure of
the fourth-order Langevin dynamics (10).

Then regarding the discretization error, it holds when η < min{η∗, 1
h
} that

E
[∣∣x((k + 1)η)− x(k+1)

∣∣2] ≤ C3dη
8 + C4e

−(k+1)hηE
[∣∣Z − x(0)

∣∣2], Z ∼ µ.

In particular, η∗ is defined at (55), and h := 2ρ− 2a
λmin,M

where ρ,M are from Theorem 2.1

and a is any positive constant equal to or less than min
{

m
3γ
, γκ

6

}
λmin,M . Moreover, C3, C4

are positive constants that depend only on γ, L, c but do not depend on the dimension
parameter d.

Proof. Step 1: Assume t ∈ [kη, (k + 1)η] and recall that x̄(t) =
(
θ̄(t), v̄1, v̄2(t), v̄3(t)

)
.

Based on (11), we have

dx̄(t) = b̄(t)dt+
√

2γDdBt,

12



where

D :=


0d 0d 0d 0d
0d 0d 0d 0d
0d 0d 0d 0d
0d 0d 0d Id

 ; b̄(t) :=


v̄1(t)

−ḡ(t) + γṽ2(t)
−γv̄1(t) + γṽ3(t)
−γv̄2(t)− γv̄3(t)

 .

Meanwhile, the fourth-order Langevin dynamics in (10) can be written as

dx(t) = b(x(t))dt+
√

2γDdBt, b(x) =


v1

−∇U(θ) + γv2
−γv1 + γv3
−γv2 − γv3

 .

Then

d(x(t)− x̄(t)) = (b(x(t))− b(x̄(t)))dt+
(
b(x̄(t))− b̄(t)

)
dt.

This leads to
d

dt
E
[
(x(t)− x̄(t))⊤M(x(t)− x̄(t))

]
= E

[
(x(t)− x̄(t))⊤M(b(x(t))− b(x̄(t)))

]
+ E

[
(x(t)− x̄(t))⊤M

(
b(x̄(t))− b̄(t)

)]
+ E

[
(b(x(t))− b(x̄(t)))⊤M(x(t)− x̄(t))

]
+ E

[(
b(x̄(t))− b̄(t)

)⊤
M(x(t)− x̄(t))

]
, (14)

where

b(x̄(t))− b̄(t) =


0

ḡ(t)−∇U(θ̄(t))− γ(ṽ2(t)− v̄2(t))
γ(v̄3(t)− ṽ3(t))

0

 . (15)

Recall the M -norm |x|M =
√
x⊤Mx and notice that

(x(t)− x̄(t))⊤M(b(x(t))− b(x̄(t))) + (b(x(t))− b(x̄(t)))⊤M(x(t)− x̄(t))

≤ (x(t)− x̄(t))⊤M

∫ 1

0

Jb(wx(t) + (1− w)x̄(t))(x(t)− x̄(t))dw

+

∫ 1

0

(x(t)− x̄(t))⊤Jb(wx(t) + (1− w)x̄(t))⊤dwM(x(t)− x̄(t))

≤ (x(t)− x̄(t))⊤(−2ρ)M(x(t)− x̄(t)) = −2ρ |x(t)− x̄(t)|2M , (16)

where the last line is due to the contraction property (8) in Theorem 2.1.

Moreover, choose any positive a ≤ min
{

m
3γ
, γκ

6

}
λmin,M and notice that per Theorem 2.1,

−ρ+
a

λmin,M

< 0. (17)

From (14), (16), (17) and Cauchy-Schwarz inequality, we can deduce that

d

dt
E
[
|x(t)− x̄(t)|2M

]
(18)
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≤ −2ρE
[
|x(t)− x̄(t)|2M + 2a |x(t)− x̄(t)|2

]
+

2

a
∥M∥2op

(
γ2 + 1

)
E
[∣∣b(x̄(t))− b̄(t)

∣∣2].
(19)

By combining the bound in (19) with√
λmin,M |x| ≤ |x|M ≤

√
λmin,M |x| , (20)

for any x, we get

d

dt
E
[
|x(t)− x̄(t)|2M

]
≤
(
−2ρ+

2a

λmin,M

)
E
[
|x(t)− x̄(t)|2M

]
+

2

a
∥M∥2op

(
γ2 + 1

)
E
[∣∣b(x̄(t))− b̄(t)

∣∣2]. (21)

Step 2: We will bound E
[∣∣b(x̄(t))− b̄(t)

∣∣2] as the second term on the right hand side of

(21). Based on (15), we will need to bound the L2 norm of

ḡ(t)−∇U(θ̄(t)), γ(ṽ2(t)− v̄2(t)), and γ(v̄3(t)− ṽ3(t)). (22)

Let us start with

E
[∣∣ḡ(t)−∇U(θ̄(t))

∣∣2] ≤ 2E
[∣∣∣ḡ(t)−∇U(θ̃(t))

∣∣∣2]+ 2E
[∣∣∣∇U(θ̃(t))−∇U(θ̄(t))

∣∣∣2]. (23)

The first term on the right hand side in (23) is bounded in (59) as E
[∣∣∣ḡ(t)−∇U(θ̃(t))

∣∣∣2] ≤
cdη7. The second term on the right hand side in (23) can be bounded by L-smoothness
of U in Condition H1 and Lemma 2.17 as

E
[∣∣∣∇U(θ̃(t))−∇U(θ̄(t))

∣∣∣2] ≤ L2E
[∣∣∣θ̄(t)− θ̃(t)

∣∣∣2] ≤ C1dη
7,

where C1 denotes a generic constant that depends only on γ, L and can change from line
to line. Thus,

E
[∣∣ḡ(t)−∇U(θ̄(t))

∣∣2] ≤ (C1 + c)dη7. (24)

We also know from Lemma 2.17 that

E
[
|ṽ2(t)− v̄2(t)|2

]
+ E

[
|ṽ3(t)− v̄3(t)|2

]
≤ C1dη

7. (25)

Per (22) and (24), (25), we arrive at E
[∣∣b(x̄(t))− b̄(t)

∣∣2] ≤ C3dη
7. Then per (21), we

have

d

dt
E
[
|x(t)− x̄(t)|2M

]
≤
(
−2ρ+

2a

λmin,M

)
E
[
|x(t)− x̄(t)|2M

]
+ C3dη

7. (26)

Step 3: Let us rewrite (26) as

d∆

dt
(t) ≤ −h∆(t) + C3dη

7, (27)
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where h := 2ρ− 2a
λmin,M

> 0 and ∆(t) := E
[
|x(t)− x̄(t)|2M

]
. We solve (27) by the integrating

factor method. We integrate from kη to t to obtain for t ∈ [kη, (k + 1)η],

∆(t) = C3de
−ht

∫ t

kη

ehs(s− kη)7ds+ eh(kη−t)∆(kη)

≤ C3d

∫ t

kη

(s− kη)7ds+ eh(kη−t)∆(kη) =
C3(t− kη)8

8
+ eh(kη−t)∆(kη).

Therefore, we get

∆((k + 1)η) ≤ C3d

8
η8 + e−hη∆(kη),

which leads to

∆((k + 1)η) ≤ C3d

8
η8

k−1∑
j=0

e−jhη + e−(k+1)hη∆(0) ≤ C3d

8
η8

1

1− e−hη
+ e−khη∆(0).

Observe that when η ≤ 1
h
, we have 1

1−hη
2

≤ 2 and hence 1
1−e−hη ≤ 1

hη(1−hη
2
)
≤ 2

hη
. This

implies

∆((k + 1)η) ≤ 4C3d

8h
η7 + e−(k+1)hη∆(0).

By the equivalence of norm relation (20), we further obtain

λmin,ME
[∣∣x((k + 1)η)− x(k)

∣∣2] ≤ 4C3d

8h
η7 + e−(k+1)hηλmin,ME

[∣∣x(0)− x(0)
∣∣2].

Now assume the continuous dynamics (10) is stationary and x(0) is distributed as its

invariant measure µ. Then E
[∣∣x(0)− x(0)

∣∣2] = E
[∣∣Z − x(0)

∣∣2
M

]
where Z ∼ µ. We also

know λmin,M , λmax,M do not depend on d per Corollary A.5. Thus, we arrive at

E
[∣∣x((k + 1)η)− x(k)

∣∣2] ≤ C3dη
7 + C4e

−(k+1)hηE
[∣∣Z − x(0)

∣∣2],
where C3, C4 are positive constants that depend on γ, L, c but do not depend on d. Here
we abuse notations and reuse C3, C4.

Finally, the fact that the constant h := 2ρ − 2a
λmin,M

> 0 depends on γ, L and does not

depend on d is due to Theorem 2.1. This completes the proof. □

Proof of Theorem 2.9. Recall the basic fact about the 2-Wasserstein distance that

Wass2(Law(X),Law(Y )) ≤ E
[
|X − Y |2

]1/2
.

In view of Proposition 2.18, we can then derive the mixing time with respect to Wass2
by solving for C3dη

7 ≤ ϵ2/2 and C4e
−(k+1)hηEZ∼µ

[∣∣Z − x(0)
∣∣]2 ≤ ϵ2/2. Solving for η in

the first equation gives η ≤ η∗ :=
(

ϵ2

2C3d

)1/7
Solving for k in the second equation gives

k ≥ log

(
2C4EZ∼µ

[
|Z−x(0)|2

]
ϵ2

)
1
hη

− 1. Plugging in the largest possible stepsize η∗ into the

right hand side of the previous inequality leads to the mixing time as claimed. □
15



2.2. P -th order Langevin Monte Carlo Algorithm for P ≥ 3.

2.2.1. P -th order Langevin Monte Carlo algorithm. Given the iterate x(k), the next iterate
x(k+1) is obtained by drawing from a multivariate normal distribution. The mean vector
M(x(k)) and the covariance matrix Σ of this multivariate normal distribution are not
provided explicitly, but their derivations are explained in the proof of Lemma C.2 for any
order P ≥ 3.

Below is the main result of this section. The proof is placed at the end of Section 2.2.3.

Theorem 2.19. Assume P ≥ 3 and Equation (28) satisfies Conditions H1 and H2. Let
a be any positive constant satisfying

a ≤ min

{
m

3γ
,
γκ

6

}
λmin,M ,

where the positive definite matrix M and the constants γ,m,L, κ are from Section 2.
Denote µ the invariant measure associated with the P -th order Langevin dynamics (5).

Let

R = 4 · 1{P=3} + (2P − 1) · 1{P≥4}.

Choose a 2-Wasserstein accuracy of ϵ small enough such that η0 :=
(

ϵ2

2C̃1d

)1/R
<

min{η∗∗, 1
h
} where h is defined in Proposition 2.26 and η∗∗, C̃1 are from Lemma C.4.

Then Wass2
(
Law(x(k∗)), µ

)
≤ ϵ, where k∗ is the mixing time of the P -th order Langevin

Monte Carlo algorithm with respect to µ that is given by

k∗ = log

2C̃4EZ∼µ

[∣∣Z − x(0)
∣∣2]

ϵ2


(
2C̃3

)1/R
h

d1/R

ϵ1/(2R)
− 1,

where C̃3, C̃4 are positive constants from Proposition 2.26 that depend on c, γ, L, P and
do not depend on the dimension d.

Remark 2.20. In the cases P = 3 and P = 4, the results in Theorem 2.19 match,
respectively, the result in [MMW+21] and the result in our Theorem 2.9.

2.2.2. Derivation of the discretization scheme. We generalize what was done in Section 2.1
to the P -th order Langevin dynamics which is

dθ(t) = v1(t)dt, (28)

dv1(t) = −∇U(θ(t))dt+ γv2(t)dt,

dvn(t) = −γvn−1(t)dt+ γvn+1(t)dt, 2 ≤ n ≤ P − 2,

dvP−1(t) = −γvP−2(t)dt− γvP−1(t)dt+
√

2γdBt.

Note that we can handle similar models with extra parameters as explained in Remark 2.11.
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Let us describe the splitting scheme for any P ≥ 3. We assume that we know x(k) =(
θ(k), v

(k)
1 , . . . , v

(k)
P−1

)
and that is performing the (k + 1)-th iterate of our algorithm.

Stage 1:

Set the initial value

xst1(kη) :=
(
θst1(kη), vst11 (kη), . . . , vst1P−1(kη)

)
= x(k).

For t ∈ (kη, (k + 1)η], let

vst11 (t) = v
(k)
1 ,

and

dθst1(t) = vst11 (t)dt,

dvst1n (t) = −γvst1n−1(t)dt+ γv
(k)
n+1dt, 2 ≤ n ≤ P − 2,

dvst1P−1(t) = −γvst1P−2(t)dt− γvst1P−1(t)dt+
√

2γdBt.

Stage j for 2 ≤ j ≤ P − 1:

Set the initial value

xstj(kη) :=
(
θstj(kη), v

stj
1 (kη), . . . , v

stj
P−1(kη)

)
= x(k).

For t ∈ (kη, (k + 1)η], let

dv
stj
1 (t) = −gstj(t)dt+ γv

stj−1

2 (t)dt,

and

dθstj(t) = v
stj
1 (t)dt,

dvstjn (t) = −γv
stj
n−1(t)dt+ γv

stj−1

n+1 dt, 2 ≤ n ≤ P − 2,

dv
stj
P−1(t) = −γv

stj
P−2(t)dt− γv

stj
P−1(t)dt+

√
2γdBt.

Note that gstj(t) is a polynomial (in t) of degree α− 1 and approximates ∇U(θstj−1(t)),
and gstj(t) will be defined in (30) below.

Finally, we set

x(k+1) = xstP−1((k + 1)η). (29)

Definitions of gstj(t), 2 ≤ j ≤ P − 1: Here we define the polynomials gstj(t) which
approximate ∇U(θstj−1(t)).

Recall the Taylor polynomial Pα−1 of degree α− 1 centering at 0 and associated with ∇U
in (12). Inductively for 2 ≤ j ≤ P − 1, let us set

gstj(t) := Pα−1

(
θstj−1(t)

)
. (30)
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Remark 2.21. In the case P = 3, the above splitting scheme is fairly similar to the
splitting scheme in [MMW+21]. The only notable difference is that we employ Taylor
polynomial approximation while the authors of [MMW+21] employ Lagrange polynomial
interpolation. The necessity of this difference has been discussed in Remark 2.14 and in
Appendix D.

Remark 2.22. The general idea of our numerical scheme is that there are several stages
of refinement. At every stage, the variable v1 which contains the non-linear term ∇U(θ)
is split from the other variables and approximated first, while the vector formed by the
remaining variables is approximated by a multivariate Ornstein-Uhlenbeck process. As a
result, the discretization procedure only works for P ≥ 3.

Moreover, there are P − 1 stages in the above discretization procedure and we cannot
add another one to it. The reason is similar to the one given in Remark 2.15.

2.2.3. Proofs. The following result is similar to Lemma 2.16. The proof is simple and is
therefore omitted.

Lemma 2.23. Denote Lα := supx∈Rd ∥∇αU(x)∥op. Under Conditions H1, it holds for
1 ≤ j ≤ P − 1 that

sup
t∈[kη,(k+1)η]

E
[∣∣∇U(θstj−1(t))− gstj(t)

∣∣2] ≤ (Lα

α!

)2

sup
t∈[kη,(k+1)η]

E
[∣∣θstj−1(t)

∣∣2α].
The next two results bound the differences in L2-norm of variables of two consecutive
stages. Lemma 2.25 is a consequence of Lemma 2.24. Their proofs are deferred to near
the end of Appendix C.

Lemma 2.24. Assume P ≥ 3 and consider the splitting scheme at the beginning of this
section with P − 1 stages. Denote the stages by j, 1 ≤ j ≤ P − 1. It holds that

• for j = 1: supt∈(kη,(k+1)η] E
[∣∣∣vst1n (t)− v

(k)
n

∣∣∣2] ≤ Cst1
n dη2, 1 ≤ n ≤ P − 2;

supt∈(kη,(k+1)η] E
[∣∣∣vst1P−1(t)− v

(k)
P−1

∣∣∣2] ≤ Cst1
P−1dη and

supt∈(kη,(k+1)η] E
[∣∣θst1(t)− θ(k)

∣∣2] ≤ Cst1
P dη2.

• for j = 2

and P = 3: supt∈(kη,(k+1)η] E
[∣∣vst21 (t)− vst11 (t)

∣∣2] ≤ Cst2
1 dη2,

supt∈(kη,(k+1)η] E
[∣∣vst22 (t)− vst12 (t)

∣∣2] ≤ Cst2
2 dη2 and

supt∈(kη,(k+1)η] E
[
|θst2(t)− θst1(t)|2

]
≤ Cst2

3 dη4.

and P ≥ 4: supt∈(kη,(k+1)η] E
[∣∣vst21 (t)− vst11 (t)

∣∣2] ≤ Cst2
1 dη2;

supt∈(kη,(k+1)η] E
[
|vst2n (t)− vst1n (t)|2

]
≤ Cst2

n dη4, 2 ≤ n ≤ P − 3;
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supt∈(kη,(k+1)η] E
[∣∣vst2P−2(t)− vst1P−2(t)

∣∣2] ≤ Cst2
P−2dη

3,

supt∈(kη,(k+1)η] E
[∣∣vst2P−1(t)− vst1P−1(t)

∣∣2] ≤ Cst2
P−1dη

5 and

supt∈(kη,(k+1)η] E
[
|θst2(t)− θst1(t)|2

]
≤ Cst2

P dη4.

Here,
{
C

stj
n : j = 1 or j = 2, 1 ≤ n ≤ P

}
are constants that depend on c, γ, L, P but do

not depend on the dimension d.

Lemma 2.25. Assume P ≥ 3 and consider the splitting scheme at the beginning of this
section with P − 1 stages. Denote the stages by j, 1 ≤ j ≤ P − 1. It holds for j ≥ 3

a) and 1 ≤ n ≤ P − j − 1 : supt∈(kη,(k+1)η] E
[∣∣∣vstjn (t)− v

stj−1
n (t)

∣∣∣2] ≤ C
stj
n dη2j;

b) and n = P − j : supt∈(kη,(k+1)η] E
[∣∣∣vstjP−j(t)− v

stj−1
n (t)

∣∣∣2] ≤ C
stj
P−jdη

2j−1;

c) and P − j + 1 ≤ n ≤ P − 1 : supt∈(kη,(k+1)η] E
[∣∣∣vstjn (t)− v

stj−1
n (t)

∣∣∣2]
≤ C

stj
n dη4j+2n−2P−1;

d) supt∈(kη,(k+1)η] E
[
|θstj(t)− θstj−1(t)|2

]
≤ C

stj
P dη2j+2.{

C
stj
n : 3 ≤ j ≤ P − 1, 1 ≤ n ≤ P

}
are constants that depend on c, γ, L, P but do not

depend on dimension d.

Consequently, it holds for the last Stage P − 1 that

sup
t∈(kη,(k+1)η]

(
E
[∣∣vst22 (t)− vst12 (t)

∣∣2]+ E
[∣∣θst2(t)− θst1(t)

∣∣2]) ≤
(
Cst2

2 + Cst2
3

)
dη4, P = 3;

(31)

and

sup
t∈(kη,(k+1)η]

(
P−1∑
n=2

E
[∣∣vstP−1

n (t)− vstP−2
n (t)

∣∣2]+ E
[∣∣θstP−1(t)− θstP−2(t)

∣∣2])

≤

(
P∑

n=2

CstP−1
n

)
dη2P−1, P ≥ 4. (32)

Proposition 2.26. Assume Equation (28) satisfies Conditions H1 and H2. Let a be any
positive constant satisfying

a ≤ min

{
m

3γ
,
γκ

6

}
λmin,M ,

where the positive definite matrix M and the constants γ,m,L, κ are from Section 2.
Denote µ the invariant measure of the P -th order Langevin dynamics (28).
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Assume further that η < {η∗∗, 1
h
}. Then regarding the discretization error, it holds when

and P ≥ 4 that

E
[∣∣x((k + 1)η)− x(k+1)

∣∣2] ≤ C̃3dη
2P−1 + C̃4e

−(k+1)hηE
[∣∣Z − x(0)

∣∣2], Z ∼ µ,

and when P = 3 that

E
[∣∣x((k + 1)η)− x(k+1)

∣∣2] ≤ C̃3dη
4 + C̃4e

−(k+1)hηE
[∣∣Z − x(0)

∣∣2], Z ∼ µ.

In particular, η∗∗ is defined at (73), h := 2ρ− 2a
λmin,M

where ρ,M are from Theorem 2.1

and a is any positive constant equal to or less than min
{

m
3γ
, γκ

6

}
λmin,M . Moreover, C̃3

and C̃4 are constants that depend on γ, L, c but not on the dimension d.

Proof. We will follow the argument in the proof of Proposition 2.18.

Step 1: Let us write

dxstP−1 = b̄(t)dt+
√

2γDdBt,

where b̄(t) ∈ MP×1 and D ∈ MPd×Pd are respectively given by:

b̄(t) :=



v
stP−1

1 (t)

−gstP−1(t) + γv
stP−2

2 (t)

−γv
stP−1

1 (t) + γv
stP−2

3 (t)
...

−γv
stP−1

P−3 (t) + γv
stP−2

P−1 (t)

−γv
stP−1

P−2 (t)− γv
stP−1

P−1 (t)


, D :=


0d · · · · · · 0d
...

. . .
...

... 0d 0d
0d · · · 0d Id

 .

Meanwhile, the P -th order Langevin dynamics (28) can be written as

dx(t) = b(x(t))dt+
√

2γDdBt, b(x) =



v1(t)
−∇U(θ(t)) + γv2(t)
−γv1(t) + γv3(t)

...
−γvP−3(t) + γvP−1(t)
−γvP−2(t)− γvP−1(t)

 .

Then

d
(
x(t)− xstP−1(t)

)
=
(
b(x(t))− b

(
xstP−1

))
dt+

(
b
(
xstP−1(t)

)
− b̄(t)

)
dt,

where

b
(
xstP−1(t)

)
− b̄(t) =



0

(gstP−1(t)−∇U(θstP−1(t))) + γ
(
v
stP−1

2 (t)− v
stP−2

2 (t)
)

γ
(
v
stP−1

3 (t)− v
stP−2

3 (t)
)

...

γ
(
v
stP−1

P−1 (t)− v
stP−2

P−1 (t)
)

0


. (33)
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This leads to

d

dt
E
[(
x(t)− xstP−1(t)

)⊤
M
(
x(t)− xstP−1(t)

)]
= E

[(
x(t)− xstP−1(t)

)⊤
M
(
b(x(t))− b(xstP−1(t)

)]
+ E

[(
x(t)− xstP−1(t)

)⊤
M
(
b(xstP−1(t))− b̄(t)

)]
+ E

[(
b(x(t))− b(xstP−1(t))

)⊤
M
(
x(t)− xstP−1(t)

)]
+ E

[(
b(xstP−1(t))− b̄(t)

)⊤
M
(
x(t)− xstP−1(t)

)]
. (34)

Notice that(
x(t)− xstP−1(t)

)⊤
M
(
b(x(t))− b(xstP−1(t)

)
+
(
b(x(t))− b(xstP−1(t))

)⊤
M(x(t)− x̄(t))

≤ (x(t)− x̄(t))⊤M

∫ 1

0

Jb(wx(t) + (1− w)x̄(t))
(
x(t)− xstP−1(t)

)
dw

+

∫ 1

0

(
x(t)− xstP−1(t)

)⊤
Jb(wx(t) + (1− w)x̄(t))⊤dwM

(
x(t)− xstP−1(t)

)
≤
(
x(t)− xstP−1(t)

)⊤
(−2ρ)M

(
x(t)− xstP−1(t)

)
= −2ρ |x(t)− x̄(t)|2M , (35)

where the last line is due to the contraction property (8) in Theorem 2.1.

Moreover, choose any positive a ≤ min
{

m
3γ
, γκ

6

}
λmin,M and notice that per Theorem 2.1,

−ρ+
a

λmin,M

< 0. (36)

From (34), (35), (36) and Cauchy-Schwarz inequality, we can deduce that

d

dt
E
[∣∣x(t)− xstP−1(t)

∣∣2
M

]
≤ −2ρE

[∣∣x(t)− xstP−1(t)
∣∣2
M

+ 2a
∣∣x(t)− xstP−1(t)

∣∣2]
+

2

a
∥M∥2op

(
γ2 + 1

)
E
[∣∣b(xstP−1(t))− b̄(t)

∣∣2]. (37)

By combining the bound in (37) with (20), we get

d

dt
E
[∣∣x(t)− xstP−1(t)

∣∣2
M

]
≤
(
−2ρ+

2a

λmin,M

)
E
[∣∣x(t)− xstP−1(t)

∣∣2
M

]
+

2

a
∥M∥2op

(
γ2 + 1

)
E
[∣∣b(xstP−1(t))− b̄(t)

∣∣2].
(38)

Step 2: We will bound E
[∣∣b(xstP−1(t))− b̄(t)

∣∣2] as the second term on the right hand

side of (38). Based on (33), we will need to bound the L2 norm of

gstP−1(t)−∇U
(
θstP−1(t)

)
, γ
(
v
stP−1

2 (t)− v
stP−2

2 (t)
)
, γ
(
v
stP−1

P−1 (t)− v
stP−2

P−1 (t)
)
.
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Per estimate (32) Lemma 2.25 and in the case P ≥ 4 (the case P = 3 is similar and is
handled at the end of this proof), we have

E
[∣∣∣γ(vstP−1

2 (t)− v
stP−2

2 (t)
)∣∣∣2]+ E

[∣∣∣γ(vstP−1

P−1 (t)− v
stP−2

P−1 (t)
)∣∣∣2]

≤ γ2
(
C

stP−1

2 + C
stP−1

P−1

)
dη2P−1. (39)

Meanwhile,

E
[∣∣gstP−1(t)−∇U

(
θstP−1(t)

)∣∣2]
≤ 2E

[∣∣gstP−1(t)−∇U
(
θstP−2(t)

)∣∣2]+ 2E
[∣∣∇U

(
θstP−2(t)

)
−∇U

(
θstP−1(t)

)∣∣2].
The same argument as the one in (59) yields

E
[∣∣gstP−1(t)−∇U

(
θstP−2(t)

)∣∣2] ≤ cdη2P−1,

for some positive constant c. Moreover, L-smoothness of U in Condition H1 and esti-
mate (32) of Lemma 2.25 imply

E
[∣∣∇U

(
θstP−2(t)

)
−∇U

(
θstP−1(t)

)∣∣2] ≤ L2DstP−1dη2P−1.

The last three bounds lead to

E
[∣∣gstP−1(t)−∇U

(
θstP−1(t)

)∣∣2] ≤ (L2DstP−1 + 1
)
dη2P−1. (40)

The combination of (33), (39) and (40) lead to

E
[∣∣b(xstP−1(t))− b̄(t)

∣∣2] ≤ C̃1dη
2P−1, P ≥ 4,

where C̃1 is a generic positive constant that depends only on c, γ, L, P and can change
from line to line. Then from (38), we get

d

dt
E
[∣∣x(t)− xstP−1(t)

∣∣2
M

]
≤
(
−2ρ+

2a

λmin,M

)
E
[∣∣x(t)− xstP−1(t)

∣∣2
M

]
+

2

a
∥M∥2op

(
γ2 + 1

)
C̃1dη

2P−1, P ≥ 4.

(41)

Step 3: Solving the differential inequality (41) by integrating factors as in the proof of
Proposition 2.18, we arrive at the desired discretization error in the case P ≥ 4.

Step 4: As the last part of this proof and in the case P = 3, we follow a similar path
and use estimate (31) in Lemma 2.25 (instead of (32)) to get an analogous inequality to
(41) that is

d

dt
E
[∣∣x(t)− xstP−1(t)

∣∣2
M

]
≤
(
−2ρ+

2a

λmin,M

)
E
[∣∣x(t)− xst2(t)

∣∣2
M

]
+

2

a
∥M∥2op

(
γ2 + 1

)
C̃1dη

4. (42)
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Then by solving the differential inequality (42) by integrating factors as in the proof of
Proposition 2.18, we arrive at the desired discretization error in the case P = 3. The
proof is complete. □

Proof of Theorem 2.19. The argument is the same as the proof of Theorem 2.9 at the

end of Section 2.1.3. We have Wass2(Law(X),Law(Y )) ≤ E
[
|X − Y |2

]1/2
. Then per

Proposition 2.26, we can solve for η in C̃3dη
41{P=3}+(2P−1)1{P≥4} ≤ ϵ2/2 and for k in

C̃4e
−(k+1)hηEZ∼µ

[∣∣Z − x(0)
∣∣2] ≤ ϵ2/2 to obtain the desired mixing time. This completes

the proof. □

3. Numerical Experiments

In this section, we will implement both third-order and fourth-order LMC algorithms.
From Section 2.1, we recall the fourth-order LMC algorithm samples a multivariate normal
distribution at every step, where mean and covariance are provided in Lemma B.1 and
Lemma B.2 in Appendix B. The mean in particular contains several nested integrals that
need to be exactly computed when the loss function U is a polynomial, and approximated
in the case where the loss function U is not a polynomial. We provide the calculations
related to these nested integrals for quadratic loss and logistic loss in Appendix E, which
allow us to perform the numerical experiments for our fourth-order LMC algorithm.

In addition, we will provide some calculations necessary to perform the numerical experi-
ments for the third-order LMC algorithm in [MMW+21] for quadratic loss.

When the potential function U(θ) satisfies Condition H1, then for a small stepsize η > 0
and two arbitrary friction parameters γ > 0 and ξ > 0, the third-order Langevin Monte
Carlo algorithm is given as follows:

Algorithm 1: Third-Order Langevin Monte Carlo Algorithm

Let x(0) =
(
θ(0), v

(0)
1 , v

(0)
2

)
= (θ∗, 0, 0)

for k = 0, 1, · · · , N − 1 do
Sample x(k+1) ∼ N

(
µ(x(k)),Σ

)
, where µ and Σ are defined in the following

equations
end for

The update of the states x from step k to k + 1 is obtained by drawing from the
distribution with mean µ

(
x(k)
)
and covariance Σ:

µ(x) :=

θ − η
2L
∆U(θ, v1) + µ12v1 + µ13v2

− 1
L
∆U(θ, v1) + µ22v1 + µ23v2

µ31

L
∆U(θ, v1) + µ32v1 + µ33v2

 ,Σ :=

σ11 · Id σ12 · Id σ13 · Id
σ12 · Id σ22 · Id σ23 · Id
σ13 · Id σ23 · Id σ33 · Id

 , (43)

where all µ’s and σ’s are defined in the article by [MMW+21]. Now we present the
fourth-order Langevin Monte Carlo algorithm as follows:
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Algorithm 2: Fourth-Order Langevin Monte Carlo Algorithm

Let x(0) =
(
θ(0), v

(0)
1 , v

(0)
2 , v

(0)
3

)
= (θ∗, 0, 0, 0)

for k = 0, 1, · · · , N − 1 do
Sample x(k+1) ∼ N

(
m(x(k)),Σ

)
, where m and Σ are defined in the following

equation (44)
end for

The update of the state x from step k to k + 1 is obtained by drawing a sample from the
multivariate Gaussian distribution with mean m(x) and covariance Σ given by:

m(x) :=


m0

m1

m2

m3

 , Σ :=


σ00 · Id σ01 · Id σ02 · Id σ03 · Id
σ01 · Id σ11 · Id σ12 · Id σ13 · Id
σ02 · Id σ12 · Id σ22 · Id σ23 · Id
σ03 · Id σ13 · Id σ23 · Id σ33 · Id

 , (44)

where the explicit formulas to compute mi ∈ Rd and σij ∈ R are given in Lemma B.2 and
the calculations for particular loss functions are given in Appendix E. Note that both
algorithms require the initialization of the model parameter θ∗. [MMW+21] recommended
that θ∗ can be chosen from the exact solution when U is a polynomial. However, we
initialize the sampling process randomly from the standard normal distribution, which
leads to superior performance.

3.1. Bayesian linear regression. We conduct experiments using our algorithms for
Bayesian linear regression-type problems using the Air Quality data from the UCI
Machine Learning Repository [Vit08]. It contains sensor readings from an array of
chemical sensors deployed in an Italian city to monitor air pollution. Collected between
March 2004 and February 2005. The dataset includes hourly measurements of key
pollutants such as carbon monoxide (CO), non-methane hydrocarbons (NMHC), benzene,
nitrogen oxides (NOx), and ozone (O3), along with meteorological variables such as
temperature and relative humidity. The dataset is often used for regression tasks to
model air quality indicators, particularly predicting CO concentration based on other
environmental variables. It presents challenges such as missing values and sensor drift,
making it suitable for testing robust data pre-processing and modeling techniques.

In this experiment, our goal is to sample the posterior distribution of the model parameters
that regress the concentration of CO present in the air. After pre-processing. The feature
matrix has d = 16 dimensions (including the intercept term) and a total of 7,674
observations.

We consider an arbitrary prior of θ from N (0, 10I). The known posterior for the linear
regression problem is given as follows:

µ(θ) ∼ N (m,V); m :=

(
Σ−1 +

X⊤X

ξ2

)−1(
X⊤y

ξ2

)
, V :=

(
Σ−1 +

X⊤X

ξ2

)−1

,

(45)
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where X and y are input data-matrix and output vector, respectively, and Σ = λId is the
covariance matrix with the Ridge regularization (L2) parameter λ, in this experiment, we
choose a smaller penalty λ = 2.

To draw a sample from the posterior, at each iteration we perform a Cholesky decomposi-
tion to factor the covariance matrix into a lower and upper triangular matrix Σ = LL⊤

and use the formula [WL06]:

x(k+1) = µ
(
x(k)
)
+ Lu; or x(k+1) = m

(
x(k)
)
+ Lu,

where u ∈ R3d (or R4d) with u ∼ N (0, I) and µ
(
x(k)
)
(or m

(
x(k)
)
) is the mean vector

at k-th iterate of the respective algorithm. Note that the covariance matrix Σ needs to
be symmetric positive definite (SPD) in order to factor it using Cholesky decomposition.
To ensure that we get an SPD matrix for arbitrarily chosen γ, ξ, and η values, we add a
small jitter (10−6) to the covariance matrix. Then we perform a grid search to find the
optimal hyperparameters based on the lowest mean 2-Wasserstein distance, computed
using the formula from [GS84].

a. W2

distance
from the
3rd-order
LMC

b. W2

distance
from the
4th-order
LMC

c. W2 dis-
tances from
the 3rd- and
4th- order
LMC

Figure 1. Comparative performance of the 3rd- and 4th-order Langevin
Monte Carlo algorithms

The tuned hyperparameters for the third-order Langevin dynamics γ = 5, η = 0.011,
and ξ = 2, and for the fourth-order Langevin dynamics γ = 1 and η = 0.011. For both
dynamics, we draw N = 1, 000 samples from the posterior distribution and compute the
W2 (2-Wasserstein) distance from the known posterior defined in (45). The shaded region
both in Figure 1a. and 1b. represent half of the standard deviation in 2-Wasserstein
distances. The relative performances of the third- and fourth-order LMC algorithms are
presented in Figure 1c. From this set of experiments, we notice that the convergence to
the posterior distribution is better for the 4th-order LMC algorithm than that of the
3rd-order LMC algorithm for a given stepsize η.

Next, we present the effect of the variation of the friction parameter γ in Figure 2. For the
same stepsize η, we observe that the 4th-order LMC algorithm provides better convergence
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a. Change in W2 distance
from the 3rd-order LMC al-
gorithm for varying γ

b. Change in W2 distance
from the 4th-order LMC al-
gorithm for varying γ

Figure 2. Comparative performance of the 3rd- and 4th-order Langevin
Monte Carlo algorithms for the same stepsize η and varying the friction
parameter γ

in terms of the 2-Wasserstein distance for smaller γ values. However, this is not always
the case for the 3rd-order LMC algorithm.

3.2. Bayesian logistic regression. In this section, we provide the implementation of the
4th-order LMC algorithm for sampling in a classification problem. To implement the 4th-
order LMC algorithm efficiently, one needs to approximate the gradient of the potential
function in higher-degree polynomials. The last step can be done via softwares per
Remark 2.12; however this complicates the implementation of our algorithm. Therefore,
we arbitrarily choose third-degree polynomials to approximate the gradient of the logistic
loss function using a Taylor polynomial which is given in Appendix E.2.

We choose the Mushroom dataset from the UCI Machine Learning Repository 2. The
dataset contains 8,124 instances of gilled mushrooms, each described by 22 categorical
features such as cap shape, odor, gill color, and habitat. After pre-processing (e.g.,
OneHotEncoding for categorical features). The final input dataset has a dimension
d = 118, and a total of 8,124 observations.

The typical objective with this data is to build a machine learning model that classifies
whether a mushroom is edible or poisonous based on the given attributes. However, our
goal in this experiment is not to find the optimal model; rather, we sample the model
parameters and see how the accuracy measure varies as we increase the number of samples
from the posterior distribution of the model parameters.

Before starting the sampling process, we split the data into 70-30 training and testing
ratio and check the sample quality on the test set. We generate N = 150 samples of

2Mushroom. UCI Machine Learning Repository, 1981. DOI: https://doi.org/10.24432/C5959T
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a. Accuracy from the 4th-
order LMC algorithm

b. Accuracy for different γ
values (for the a fixed step-
size η = 0.012)

Figure 3. Performance of the 4th-order LMC algorithm in sampling from
a non-polynomial potential function

the model parameters and run a grid search for the hyperparameters η and γ. To avoid
overfitting, we use a larger penalty λ = 25.

From Figure 3 (a), we see that the 4th-order LMC algorithm performs very well even for
smaller degree polynomial approximation of the gradient of the potential function. We
tune the model parameters η = 0.012 and γ = 1. Then we show the effect of the variation
in the friction parameter for a chosen stepsize η = 0.012 in Figure 3 (b). We see that
smaller γ values result in better performance in terms of higher accuracy.

4. Conclusion

In this paper, we proposed P -th order Langevin Monte Carlo algorithms based on the
discretizations of P -th order Langevin dynamics for any P ≥ 3. We designed discretization
schemes based on splitting and accurate integration methods. When the density of the
target distribution is log-concave and smooth, we obtained Wasserstein convergence
guarantees that lead to better iteration complexities. Specifically, the mixing time of the

P -th order LMC algorithm scales as O
(
d

1
R/ϵ

1
2R

)
forR = 4·1{P=3}+(2P−1)·1{P≥4}, which

has a better dependence on the dimension d and the accuracy level ϵ as P grows. Numerical
experiments were conducted to illustrate the efficiency of our proposed algorithms.
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Appendix A. Supporting Results for Section 2

DenoteMm,n(R) the set of real matrices of sizem×n. In [Mon23, Section 4.3], Monmarché
considers the generalized Langevin diffusions :

dXt = AYtdt,

dYt = −A⊤∇U(Xt)dt− γBYtdt+
√
γΣdWt, (46)

with A ∈ Md,p(R); B,Σ ∈ Mp,p(R); U ∈ C2(Rd); γ > 0 and W is a standard p-
dimensional Brownian motion.

Set b as the drift coefficient of (46), that is

b(x, y) :=

(
Ay

−A⊤∇U(x)− γBy

)
. (47)

We summarize here Assumptions 1, 2 and 3 in [Mon23, Section 4.3] regarding (46).

Condition F.

• There exist m,L, κ > 0 and a symmetric positive-definite matrix H of size p× p
such that

HB +B⊤H ≥ 2κH, (48)

and that U is m strongly-convex and L-smooth: mId ≤ ∇2U(x) ≤ LId, for any
x ∈ Rd.

• p ≥ d and A = (Id, 0, . . . , 0).

• When p > d, consider the decomposition B =

(
B11 B12

B21 B22

)
where B11, B12, B21, B22

are respectively of size d× d, d× (p− d), (p− d)× d and (p− d)× (p− d). In
this case, we assume B22 is invertible and that

E := B11 −B12B
−1
22 B21

is symmetric positive-definite. Set D := B12B
−1
22 .

• When p = d, we assume B is symmetric positive definite. Set E = B and D = 0.

Remark A.1. In [Mon23, Assumption 2], the author writes HB ≥ κH. If one looks at
the notation subsection right before Section 2 of the aforementioned reference, HB ≥ κH
for not necessarily symmetric matrix HB is understood as HB +B⊤H ≥ 2κH, which is
what we have in our Condition F.

Remark A.2. In [Mon23], beside from Condition F, the author also assumes that ∇αU
for any |α| =

∑
i αi ≥ 2 is bounded. Per private communication with the author, this is

done out of convenience to avoid technical regularity issues regarding the semi-groups. In
our case, we are interested in Theorem 9 in [Mon23] which only requires the boundedness
of second-order derivative of U and not of the higher order derivative.

The following result is stated under Assumption 3 in [Mon23].
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Lemma A.3. Under Condition F, there exist constants hi > 0, 1 ≤ i ≤ 5 such that

HA⊤AH ≤ h1H,
1

h2

Id ≤ E ≤ h3Id,(
Id −D
0 0

)
≤ h4H,

(
Id −D

−D⊤ 0

)
≤ h5H.

Note that we follow the convention in [Mon23]: for m×m matrices M,H that are not
necessarily symmetric, M ≥ H means ⟨x,Mx⟩ ≥ ⟨x,Hx⟩ for all x ∈ Rm.

Theorem A.4. ([Mon23, Lemma 8 and Theorem 9]) Assume Conditions F and set

γ0 = 2

√
h1L

κ
max

{√
h2h5,

√
h4

κ

}
.

Further assume that the friction coefficient γ is sufficiently large: γ ≥ γ0. Set ρ =

min
{

m
3h3γ

, γκ
6

}
. Recall the drift coefficient b in (47) and denote Jb its Jacobian matrix.

Write
(
Id −D

)
as a block matrix. Then M :=

(
E 1

γ

(
Id −D

)
1
γ

(
Id −D

)⊤ κ
Lh1

H

)
is a

symmetric positive-definite matrix of size (d+ p)× (d+ p) such that

MJb + J⊤
b M ≤ −2ρM.

Moreover, the matrix M satisfies

1

2

(
E 0
0 κ

Lh1
H

)
≤ M ≤ 3

2

(
E 0
0 κ

Lh1
H

)
. (49)

A P -th order Langevin dynamics as the focus of the main paper is a special case of (46)
where p = (P − 1)d and

A = AP =
(
Id 0 . . . 0

)
and B = BP =


0 −Id 0 . . . 0

Id 0 −Id
. . .

...

0
. . . . . . . . . 0

...
. . . Id 0 −Id

0 . . . 0 Id Id

 . (50)

The following Corollary is Theorem A.4 in the special case of P -th order Langevin
dynamics. The proof is mostly taken from [Mon23, Section 4]. We add some details
regarding dimension dependence of the parameters since this is not one of the goals of
[Mon23]; however, it is a crucial concern of our paper.

Corollary A.5. ([Mon23, Section 4]) Conditions F is satisfied for the P -th order Langevin
dynamics (50), so that the conclusion of Theorem A.4 applies to (50). In particular,
regarding the matrix M , we have E = Id, D = −

(
Id . . . Id

)
, while the matrix H, the

constants κ and hi, 1 ≤ i ≤ 5 are explicitly provided in Step 3 of the proof.
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Moreover, ρ = ρ(γ, L, P ), γ0 = γ0(γ, L, P ) depend on γ, L, P but do not depend on the
dimension parameter d. Furthermore, λmin,M = λmin,M(P ) and λmax,M = λmax,M(P ) as
respectively the smallest and largest eigenvalues of the positive definite matrix M depend
on P and do not depend on the dimension parameter d.

Proof. The proof is divided into six steps.

Step 1: We start by observing a simplified form of the matrix B = BP in (50):

B = Bsim ⊗ Id, Bsim :=


0 −1 0 . . . 0

1 0 −1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 0 −1

0 . . . 0 1 1

 ,

where ⊗ denotes the Kronecker product ([HJ94]). This simplified form indicates that B
and the (P − 1)× (P − 1) matrix Bsim have the same spectrum, and thus such spectrum
does not depend on d. Furthermore, it indicates that if vi, 1 ≤ i ≤ P − 1 are eigenvectors
(respectively generalized eigenvectors) of Bsim and ej, 1 ≤ j ≤ d are the standard basis of
Rd, then wi = vi ⊗ ej, 1 ≤ i ≤ P − 1, 1 ≤ j ≤ d are eigenvectors (respectively generalized
eigenvectors) of B.

Step 2: Let us verify that min{Re(λ) : λ is an eigenvalue of Bsim} > 0, which to-
gether with B,Bsim having the same spectrum from the Step 1 imply min{Re(λ) :
λ is an eigenvalue of B} > 0.

We have the decomposition Bsim = 1
2
(Bsim +B⊤

sim) +
1
2
(Bsim −B⊤

sim) := H +K where H
is a Hermitian matrix and K is a skew-Hermitian matrix. Now assume λ is an eigenvalue
of Bsim: Bsimx = λx for a nonzero vector x = (x1, . . . , xP−1) ∈ CP−1. Then λ = x∗Bsimx

x∗x
where x∗ denotes the conjugate transpose of x, and hence

Re(λ) =
x∗Hx

x∗x
=

|xP−1|2

|x|2
.

We claim that xP−1 ̸= 0 which implies Re(λ) > 0. Suppose the opposite that xP−1 = 0,
then it is easy to solve for Bsimx = λx to get x1 = x2 = · · · = xP−1 = 0, which is a
contradiction. This completes our argument for the Step 2.

Step 3 in the case where B is diagonalizable: Let us construct H, κ that satisfy
Condition F in the simpler case where B is diagonalizable. The construction has been
done in [AE14, Lemma 4.3] or [AJW20, Section 2.1], and we summarize it here for the
sake of completeness.

In this case, B has (P − 1)d linearly independent eigenvectors wi, 1 ≤ i ≤ (P − 1)d
corresponding to (P − 1)d eigenvalues λi, 1 ≤ i ≤ (P − 1)d. Denote w∗

i the conjugate

transpose of wi and set H =:
∑(P−1)d

i=1 wiw
∗
i , then

HB +B⊤H =

(P−1)d∑
i=1

(
λi + λi

)
wiw

∗
i ≥ 2min{Re(λi), 1 ≤ i ≤ (P − 1)d}

(P−1)d∑
i=1

wiw
∗
i
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= 2λ̂H, λ̂ = min{Re(λ) : λ is an eigenvalue of B}.

Thus, in the case where B is diagonalizable, κ in Condition F can be taken as λ̂ which is
a positive number per our Step 2 above.

Step 3 in the case where B is not diagonalizable: In contrast to the previous case,
there is at least one Jordan block of B of length ℓn ≥ 2. In this case, and the construction
of H, κ satisfying Condition F is more elaborate. Denote the Jordan blocks of B by
Bn, 1 ≤ n ≤ H. Each block Bn of length ℓn is associated with the eigenvalue λn and

the set of generalized eigenvectors v
(k)
n ; 1 ≤ k ≤ ℓn. In particular, v

(1)
n is the (standard)

eigenvector of Jn.

For a Jordan block Bn with Re(λn) > λ̂, we set Hn =
∑ℓn

i=1 b
i
nv

(i)
n

(
v
(i)
n

)∗
where

b1n = 1; bjn = cj(tn)
2(1−j), 2 ≤ j ≤ ℓn and c1 = 1; cj+1 = 1 + c2j , 2 ≤ j ≤ ℓn

and tn = 2(Re(λn)− κ).

Then per [AE14, Lemma 4.3], HnBn +B⊤
n Hn ≥ 2λ̂Hn.

Meanwhile, for a Jordan block Bm with Re(λm) = λ̂, we replace the above tn with

tm = 2(Re(λn)− λ̂+ ϵ) for any ϵ ∈ (0, λ̂) and define H̃m(ϵ) =
∑ℓm

i=1 b
i
m(ϵ)v

(i)
m

(
v
(i)
m

)∗
. Then

H̃mBm +B⊤
mH̃m ≥ 2(λ̂− ϵ)H̃m.

Therefore, in the case where B is not diagonalizable, we denote I = {n ∈ {1, · · · , N} :

ℓn ≥ 2,Re(λn) = λ̂} and define H := H(ϵ) =
∑

n∈{1,...,N}\I Hn +
∑

m∈I H̃m(ϵ). Then we
have

H(ϵ)B +B⊤H(ϵ) ≥ 2(λ̂− ϵ)H(ϵ).

Thus, in the case where B is not diagonalizable, κ in Condition F is λ̂−ϵ for any ϵ ∈ (0, λ̂).

Notice λ̂ > 0 per our Step 2, so that it is possible to choose ϵ > 0 such that λ̂− ϵ > 0.

Step 4: Let us verify that κ, ∥H∥op and ∥H−1∥op do not depend on d. The former is

clear from the fact that κ is either 2λ̂ or 2(λ̂− ϵ) in the Step 2, and the fact that B has
the same spectrum as the (P − 1)× (P − 1) matrix Bsim, per the first paragraph of this
proof. Regarding ∥H∥op, we will assume B is diagonalizable to keep things simple (the

case of non-diagonalizable B is almost the same). We know from the first paragraph of
this proof that

H =
∑

1≤i≤P−1,1≤j≤d

(vi ⊗ ej)
(
v∗i ⊗ e⊤j

)
=

∑
1≤i≤P−1,1≤j≤d

(viv
∗
i )⊗

(
ej ⊗ e⊤j

)
=

( ∑
1≤i≤P−1

viv
∗
i

)
⊗

( ∑
1≤j≤d

ej ⊗ e⊤j

)

=

( ∑
1≤i≤P−1

viv
∗
i

)
⊗ Id. (51)
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Thus, we have ∥H∥op =
∥∥∑

1≤i≤P−1 viv
∗
i

∥∥
op
∥Id∥op =

∥∥∑
1≤i≤P−1 viv

∗
i

∥∥
op

(see [LF72,

Theorem 8] regarding matrix norms and Kronecker product). Since
∑

1≤i≤P viv
∗
i is

a (P − 1) × (P − 1) matrix, ∥H∥op does not depend on d. We can reach the same

conclusion for ∥H−1∥op, noting that H−1 =
(∑

1≤i≤P−1 viv
∗
i

)−1 ⊗ Id.

Step 5: We verify that the constants in Lemma A.3 do not depend on d. In Lemma A.3,
the matrix E = Id (pointed out below Assumption 3 in [Mon23]). Thus, we can take
h1 =

∥∥HA⊤A
∥∥
op
, h2 = 1 and h3 = 1. Then from (51) and A =

(
Id 0 . . . 0

)
=

(
1 0 . . . 0

)
⊗ Id, we deduce that h1 =

∥∥∥∥∥∥∥H
1 · · · 0
...

. . .
...

0 · · · 0


∥∥∥∥∥∥∥
op

. Thus, h1, h2, h3 do not

depend on d. What remain to study are h4 and h5. We have D = −(Id, . . . , Id) as pointed
out below Assumption 3 in [Mon23]. It is easy to verify that (1 + (P − 1)/2)I(P−1)d −(
Id −D
0 0

)
≥ 0, which implies

(
Id −D
0 0

)
H−1H ≤ (1 + P/2)H−1H ≤ (1 + (P − 1)/2)

∥∥H−1
∥∥
op
H,

and hence h4 = (1 + (P − 1)/2) ∥H−1∥op. The formula h5 = (1 + P ) ∥H−1∥op is obtained

the same way, noting that

(
Id −D

−D⊤ 0

)
=

(
Id −D
0 0

)
+

(
Id 0

−D⊤ 0

)
. Finally, ∥H−1∥op =∥∥∥(∑1≤i≤P−1 viv

∗
i

)−1
∥∥∥
op

does not depend on d per the Step 3, so that h4 and h5 do not

depend on d.

Step 6: Let us consider ρ, γ0 and λmin,M of Theorem A.4 in the context of the P -th order
Langevin dynamics (50). Note that m and L are respectively the strong-convexity and
smoothness constants of U does not depend on d. This, combined with the conclusions in

the Step 3 and Step 4, implies that γ0 = 2
√

h1L
κ

max
{√

h2h5,
√

h4

κ

}
and γ > γ0 does

not depend on d. Regarding λmin,M , it is pointed out below Assumption 3 in [Mon23]
that in the case of P -th order Langevin dynamics (50), E = Id in Condition F. Then
inequality (49) becomes

1

2

(
Id 0
0 κ

Lh1
H

)
≤ M ≤ 3

2

(
Id 0
0 κ

Lh1
H

)
.

Moreover, per (51), H and the (P − 1)× (P − 1) matrix
∑

1≤i≤P−1 viv
∗
i share the same

spectrum which does not depend on d. Then by a consequence of Courant–Fischer–Weyl’s
min-max Theorem regarding comparison of eigenvalues of positive definite matrices ([HJ94,
Problem 4.2.P8, Page 238], we can conclude λmin,M as the smallest eigenvalue of the
positive definite matrix M does not depend on d. The same conclusion holds for λmax,M .
The proof is complete. □
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Appendix B. Details of Fourth-Order Langevin Monte Carlo Algorithm

Lemma B.1 as the first result of this Appendix contains explicit form of the components
of x̄((k + 1)η) in terms of the components of x(k) in the splitting scheme (11). Based on
it, we will be able to derive in Lemma B.2 the conditional mean and covariance associated
with the fourth-order LMC algorithm in Section 2.1.

Here are the components of x̂(t) in terms of the components of x(k).

v̂1(t) = v
(k)
1 ,

θ̂(t) = θ(k) + (t− kη)v
(k)
1 , (52)

v̂2(t) = v
(k)
2 + γ

(
v
(k)
3 − v

(k)
1

)
(t− kη),

v̂3(t) = e−γ(t−kη)v
(k)
3 − γ

∫ t

kη

e−γ(t−s)v̂2(s)ds+
√

2γ

∫ t

kη

e−γ(t−s)dBs

= e−γ(t−kη)v
(k)
3 − γv

(k)
2

∫ t

kη

e−γ(t−s)ds

− γ2
(
v
(k)
3 − v

(k)
1

)∫ t

kη

e−γ(t−s)(s− kη)ds+
√

2γ

∫ t

kη

e−γ(t−s)dBs.

Next are the components of x̃(t) in terms of the components of x(k).

ṽ1(t) = v
(k)
1 −

∫ t

kη

g̃(s)ds+ γ

∫ t

kη

v̂2(s)ds

= v
(k)
1 −

∫ t

kη

g̃(s)ds+ γv
(k)
2 (t− kη) + γ2

(
v
(k)
3 − v

(k)
1

)(t− kη)2

2
, (53)

θ̃(t) = θ(k) +

∫ t

kη

ṽ1(s)ds

= θ(k) + v
(k)
1 (t− kη)−

∫ t

kη

∫ s

kη

g̃(r)drds+ γv
(k)
2

(t− kη)2

2!
+ γ2

(
v
(k)
3 − v

(k)
1

)(t− kη)3

3!
,

ṽ2(t) = v
(k)
2 − γ

∫ t

kη

ṽ1(s)ds+ γ

∫ t

kη

v̂3(s)ds

= v
(k)
2 − γv

(k)
1 (t− kη) + γ

∫ t

kη

∫ s

kη

g̃(r)drds− γ2v
(k)
2

(t− kη)2

2!
− γ3

(
v
(k)
3 − v

(k)
1

)(t− kη)3

3!

+ γv
(k)
3

∫ t

kη

e−γ(s−kη)ds− γ2v
(k)
2

∫ t

kη

∫ s

kη

e−γ(s−r)drds

− γ3
(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

e−γ(s−r)(r − kη)drds+ γ
√

2γ

∫ t

kη

∫ s

kη

e−γ(s−r)dBrds,

ṽ3(t) = v
(k)
3 e−γ(t−kη) − γ

∫ t

kη

e−γ(t−s)ṽ2(s)ds+
√

2γ

∫ t

kη

e−γ(t−s)dBs
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= v
(k)
3 e−γ(t−kη) +

√
2γ

∫ t

kη

e−γ(t−s)dBs − γv
(k)
2

∫ t

kη

e−γ(t−s)ds+ γ2v
(k)
1

∫ t

kη

e−γ(t−s)(s− kη)ds

− γ2

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(t−s)g̃(w)dwdrds

+ γ3v
(k)
2

∫ t

kη

e−γ(t−s) (s− kη)2

2!
ds+ γ4

(
v
(k)
3 − v

(k)
1

)∫ t

kη

e−γ(t−s) (s− kη)3

3!
ds

− γ2v
(k)
3

∫ t

kη

∫ s

kη

e−γ(t−s)e−γ(r−kη)drds+ γ3v
(k)
2

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(t−s)e−γ(r−w)dwdrds

+ γ4
(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

∫ r

kη

e−γ(t−s)e−γ(r−w)(w − kη)dwdrds

− γ2
√

2γ

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(r−w)e−γ(t−s)dBwdrds.

Finally are the components of x̄(t) in terms of the components of x(k).

v̄1(t) = v
(k)
1 −

∫ t

kη

ḡ(s)ds+ γ

∫ t

kη

ṽ2(s)ds

= v
(k)
1 −

∫ t

kη

ḡ(s)ds+ γv
(k)
2 (t− kη)− γ2v

(k)
1

(t− kη)2

2!
+ γ2

∫ t

kη

∫ s

kη

∫ r

kη

g̃(w)dwdrds

− γ3v
(k)
2

(t− kη)3

3!
− γ4

(
v
(k)
3 − v

(k)
1

)(t− kη)4

4!
+ γ2v

(k)
3

∫ t

kη

∫ s

kη

e−γ(r−kη)drds

− γ3v
(k)
2

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(r−w)dwdrds− γ4
(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

∫ r

kη

e−γ(r−w)(w − kη)dwdrds

+ γ2
√

2γ

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(r−w)dBwdrds,

θ̄(t) = θ(k) +

∫ t

kη

v̄1(s)ds

= θ(k) + v
(k)
1 (t− kη)−

∫ t

kη

∫ s

kη

ḡ(r)drds+ γv
(k)
2

(t− kη)2

2!
− γ2v

(k)
1

(t− kη)3

3!

+ γ2

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

g̃(y)dydwdrds− γ3v
(k)
2

(t− kη)4

4!
− γ4

(
v
(k)
3 − v

(k)
1

)(t− kη)5

5!

+ γ2v
(k)
3

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(w−kη)dwdrds− γ3v
(k)
2

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(w−y)dydwdrds

− γ4
(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(w−y)(y − kη)dydwdrds

+ γ2
√

2γ

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(w−y)dBydwdrds,
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v̄2(t) = v
(k)
2 − γ

∫ t

kη

v̄1(s)ds+ γ

∫ t

kη

ṽ3(s)ds

= v
(k)
2 +

[
− γv

(k)
1 (t− kη) + γ

∫ t

kη

∫ s

kη

ḡ(r)drds− γ2v
(k)
2

(t− kη)2

2
+ γ3v

(k)
1

(t− kη)3

3!

− γ3

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

g̃(y)dydwdrds+ γ4v
(k)
2

(t− kη)4

4!
+ γ5

(
v
(k)
3 − v

(k)
1

)(t− kη)5

5!

− γ3v
(k)
3

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(w−kη)dwdrds+ γ4v
(k)
2

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(w−y)dydwdrds

+ γ5
(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(w−y)(y − kη)dydwdrds

− γ3
√

2γ

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(w−y)dBydwdrds

]

+

[
γv

(k)
3

∫ t

kη

e−γ(s−kη)ds+ γ
√

2γ

∫ t

kη

∫ s

kη

e−γ(s−r)dBrds

− γ2v
(k)
2

∫ t

kη

∫ s

kη

e−γ(s−r)drds+ γ3v
(k)
1

∫ t

kη

∫ s

kη

e−γ(s−r)(r − kη)drds

− γ3

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(s−r)g̃(y)dydwdrds+
γ4

2!
v
(k)
2

∫ t

kη

∫ s

kη

e−γ(s−r)(r − kη)2drds

+
γ5

3!

(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

e−γ(s−r)(r − kη)3drds− γ3v
(k)
3

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(s−r)e−γ(w−kη)dwdrds

+ γ4v
(k)
2

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(s−r)e−γ(w−y)dydwdrds

+ γ5
(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(s−r)e−γ(w−y)(y − kη)dydwdrds

− γ3
√

2γ

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(s−y)e−γ(w−r)dBydwdrds.

]
,

v̄3(t) = v̄
(k)
3 e−γ(t−kη) − γ

∫ t

kη

e−γ(t−s)v̄2(s)ds+
√

2γ

∫ t

kη

e−γ(t−s)dBs

= v̄
(k)
3 e−γ(t−kη) +

√
2γ

∫ t

kη

e−γ(t−s)dBs

+

[
− γv

(k)
2

∫ t

kη

e−γ(t−s)ds+ γ2v
(k)
1

∫ t

kη

e−γ(t−s)(s− kη)ds− γ2

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(t−s)ḡ(w)dwdrds

+
γ3

2!
v
(k)
2

∫ t

kη

e−γ(t−s)(s− kη)2ds− γ4

3!
v
(k)
1

∫ t

kη

e−γ(t−s)(s− kη)3ds
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+ γ4

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ(t−s)g̃(z)dzdydwdrds

− γ5

4!
v
(k)
2

∫ t

kη

e−γ(t−s)(s− kη)4ds− γ6

5!

(
v
(k)
3 − v

(k)
1

)∫ t

kη

e−γ(t−s)(s− kη)5ds

+ γ4v
(k)
3

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(t−s)e−γ(y−kη)dydwdrds

− γ5v
(k)
2

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−k(t−s)e−γ(y−z)dzdydwdrds

− γ6
(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ(t−s)e−γ(y−z)(z − kη)dzdydwdrds

+ γ4
√

2γ

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ(t−s)e−γ(y−z)dBzdydwdrds

]

+

[
− γ2v

(k)
3

∫ t

kη

∫ s

kη

e−γ(t−s)e−γ(r−kη)drds− γ2
√

2γ

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(t−s)e−γ(r−w)dBwdrds

+ γ3v
(k)
2

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(t−s)e−γ(r−w)dwdrds− γ4v
(k)
1

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(t−s)e−γ(r−w)(w − kη)dwdrds

+ γ4

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ(t−s)e−γ(r−w)g̃(z)dzdydwdrds

− γ5

2!
v
(k)
2

∫ t

kη

∫ s

kη

∫ r

kη

e−γ(t−s)e−γ(r−w)(w − kη)2dwdrds

− γ6

3!

(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

∫ r

kη

e−γ(t−s)e−γ(r−w)(w − kη)3dwdrds

+ γ4v
(k)
3

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(t−s)e−γ(r−w)e−γ(y−kη)dydwdrds

− γ5v
(k)
2

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ(t−s)e−γ(r−w)e−γ(y−z)dzdydwdrds

− γ6
(
v
(k)
3 − v

(k)
1

)∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ(t−s)e−γ(r−w)e−γ(y−z)(z − kη)dzdydwdrds

+ γ4
√

2γ

∫ t

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ(t−s)e−γ(y−z)e−γ(r−w)dBzdydwdrds

]
.

Via the above equations and software to evaluate the iterated integrals, we obtain the
following result.

Lemma B.1. Recall the definition of polynomials g̃(t) and ḡ(t) in (13). The following
are explicit expressions of components of x̄((k + 1)η) in terms of x(k).
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θ̄((k + 1)η) = −
∫ (k+1)η

kη

∫ s

kη

ḡ(r)drds+ γ2

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

g̃(y)dydwdrds

+ f0 + θ(k)µ00 + v
(k)
1 µ01 + v

(k)
2 µ02 + v

(k)
3 µ03;

v̄1((k + 1)η) = −
∫ (k+1)η

kη

ḡ(s)ds+ γ2

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

g̃(w)dwdrds

+ f1 + θ(k)µ10 + v
(k)
1 µ11 + v

(k)
2 µ12 + v

(k)
3 µ13;

v̄2((k + 1)η) = γ

∫ (k+1)η

kη

∫ s

kη

ḡ(r)drds− γ3

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

g̃(y)dydwdrds

− γ3

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(s−r)g̃(y)dydwdrds+ f2 + θ(k)µ20 + v
(k)
1 µ21 + v

(k)
2 µ22 + v

(k)
3 µ23;

v̄3((k + 1)η) = −γ2

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

e−γ((k+1)η−s)ḡ(w)dwdrds

+ γ4

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ((k+1)η−s)g̃(z)dzdydwdrds

+ γ4

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ((k+1)η−s)e−γ(r−w)g̃(z)dzdydwdrds

+ f3 + θ(k)µ30 + v
(k)
1 µ31 + v

(k)
2 µ32 + v

(k)
3 µ33.

Here µij, 0 ≤ i, j ≤ 3 are the constants

µ00 = 1;

µ01 = η − γ2η
3

3!
+ γ4η

5

5!
+ γ4

(
−e−γη

γ5
+

1

γ5
− η

γ4
+

η2

2γ3
− η3

6γ2
+

η4

24γ

)
;

µ02 = γ
η2

2!
− γ3η

4

4!
− γ3

(
e−γη

γ4
− 1

γ4
+

η

γ3
− η2

2γ2
+

η3

6γ

)
;

µ03 = −γ4η
5

5!
+ γ2

(
−e−γη

γ3
+

1

γ3
− η

γ2
+

η2

2γ

)
− γ4

(
−e−γη

γ5
+

1

γ5
− η

γ4
+

η2

2γ3
− η3

6γ2
+

η4

24γ

)
;

µ10 = 0;

µ11 = 1− γ2η
2

2!
+ γ4η

4

4!
+ γ4

(
e−γη

γ4
− 1

γ4
+

η

γ3
− η2

2γ2
+

η3

6γ

)
;

µ12 = γη − γ3η
3

3!
− γ3

(
−e−γη

γ3
+

1

γ3
− η

γ2
+

η2

2γ

)
;

µ13 = −γ4η
4

4!
+ γ2

(
e−γη

γ2
− 1

γ2
+

η

γ

)
− γ4

(
e−γη

γ4
− 1

γ4
+

η

γ3
− η2

2γ2
+

η3

6γ

)
;

µ20 = 0;
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µ21 = −γη + γ3η
3

3!
− γ5η

5

5!
− γ5

(
−e−γη

γ5
+

1

γ5
− η

γ4
+

η2

2γ3
− η3

6γ2
+

η4

24γ

)
+ γ3

(
−e−γη

γ3
+

1

γ3
− η

γ2
+

η2

2γ

)
− γ5

3!

(
−6e−γη

γ5
+

6

γ5
− 6η

γ4
+

3η2

γ3
− η3

γ2
+

η4

4γ

)
− γ5

(
4e−γη

γ5
− 4

γ5
+

ηe−γη

γ4
+

3η

γ4
− η2

γ3
+

η3

6γ2

)
;

µ22 = 1− γ2η
2

2
+ γ4η

4

4!
+ γ4

(
e−γη

γ4
− 1

γ4
+

η

γ3
− η2

2γ2
+

η3

6γ

)
− γ2

(
e−γη

γ2
− 1

γ2
+

η

γ

)
+

γ4

2!

(
2e−γη

γ4
− 2

γ4
+

2η

γ3
− η2

γ2
+

η3

3γ

)
+ γ4

(
−3e−γη

γ4
+

3

γ4
− ηe−γη

γ3
− 2η

γ3
+

η2

2γ2

)
;

µ23 = γ5η
5

5!
− γ3

(
−e−γη

γ3
+

1

γ3
− η

γ2
+

η2

2γ

)
+ γ5

(
−e−γη

γ5
+

1

γ5
− η

γ4
+

η2

2γ3
− η3

6γ2
+

η4

24γ

)
+ (1− e−γη)

+
γ5

3!

(
−6e−γη

γ5
+

6

γ5
− 6η

γ4
+

3η2

γ3
− η3

γ2
+

η4

4γ

)
+ γ5

(
4e−γη

γ5
− 4

γ5
+

ηe−γη

γ4
+

3η

γ4
− η2

γ3
+

η3

6γ2

)
;

µ30 = 0;

µ31 = γ2

(
e−γη

γ2
− 1

γ2
+

η

γ

)
− γ4

3!

(
6e−γη

γ4
− 6

γ4
+

6η

γ3
− 3η2

γ2
+

η3

γ

)
+

γ6

5!

(
120e−γη

γ6
− 120

γ6
+

120η

γ5
− 60η2

γ4
+

20η3

γ3
− 5η4

γ2
+

η5

γ

)
+ γ6

(
−5e−γη

γ6
+

5

γ6
− ηe−γη

γ5
− 4η

γ5
+

3η2

2γ4
− η3

3γ3
+

η4

24γ2

)
− γ4

(
−3e−γη

γ4
+

3

γ4
− ηe−γη

γ3
− 2η

γ3
+

η2

2γ2

)
+

γ6

3!

(
−30e−γη

γ6
+

30

γ6
− 6ηe−γη

γ5
− 24η

γ5
+

9η2

γ4
− 2η3

γ3
+

η4

4γ2

)
+ γ6

(
10e−γη

γ6
− 10

γ6
+

4ηe−γη

γ5
+

6η

γ5
+

η2e−γη

2γ4
− 3η2

2γ4
+

η3

6γ3

)
;

µ32 = −γ

(
1

γ
− e−γη

γ

)
+

γ3

2!

(
−2e−γη

γ3
+

2

γ3
− 2η

γ2
+

η2

γ

)
− γ5

4!

(
−24e−γη

γ5
+

24

γ5
− 24η

γ4
+

12η2

γ3
− 4η3

γ2
+

η4

γ

)
− γ5

(
4e−γη

γ5
− 4

γ5
+

ηe−γη

γ4
+

3η

γ4
− η2

γ3
+

η3

6γ2

)
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+ γ3

(
2e−γη

γ3
− 2

γ3
+

ηe−γη

γ2
+

η

γ2

)
− γ5

2!

(
8e−γη

γ5
− 8

γ5
+

2ηe−γη

γ4
+

6η

γ4
− 2η2

γ3
+

η3

3γ2

)
− γ5

(
− 6e−γη

γ5
+

6

γ5
− 3ηe−γη

γ4
− 3η

γ4
− η2e−γη

2γ3
+

η2

2γ3

)
;

µ33 = e−γη − γ6

5!

(
120e−γη

γ6
− 120

γ6
+

120η

γ5
− 60η2

γ4
+

20η3

γ3
− 5η4

γ2
+

η5

γ

)
+ γ4

(
−3e−γη

γ4
+

3

γ4
− ηe−γη

γ3
− 2η

γ3
+

η2

2γ2

)
− γ6

(
−5e−γη

γ6
+

5

γ6
− ηe−γη

γ5
− 4η

γ5
+

3η2

2γ4
− η3

3γ3
+

η4

24γ2

)
− γ2

(
−e−γη

γ2
+

1

γ2
− ηe−γη

γ

)
− γ6

3!

(
−30e−γη

γ6
+

30

γ6
− 6ηe−γη

γ5
− 24η

γ5
+

9η2

γ4
− 2η3

γ3
+

η4

4γ2

)
+ γ4

(
3e−γη

γ4
− 3

γ4
+

2ηe−γη

γ3
+

η

γ3
+

η2e−γη

2γ2

)
− γ6

(
10e−γη

γ6
− 10

γ6
+

4ηe−γη

γ5
+

6η

γ5
+

η2e−γη

2γ4
− 3η2

2γ4
+

η3

6γ3

)
;

Meanwhile, fi, 0 ≤ i ≤ 4 are Itô integrals defined via

f0 = γ2
√
2γ

∫ (k+1)η

kη

γ(y − η(k + 1))(−γη(k + 1) + γy + 2)− 2eγ(y−η(k+1)) + 2

2γ3
dBy;

f1 = γ2
√

2γ

∫ (k+1)η

kη

γη + γηk + eγ(y−η(k+1)) − γy − 1

γ2
dBy;

f2 = −γ3
√

2γ

∫ (k+1)η

kη

γ(y − η(k + 1))(−γη(k + 1) + γy + 2)− 2eγ(y−η(k+1)) + 2

2γ3
dBy

− γ
√

2γ

∫ (k+1)η

kη

eγ(y−η(k+1)) − 1

γ
dBy

− γ3
√

2γ

∫ (k+1)η

kη

γη + γηk + eγ(y−η(k+1))(γη(k + 1) + γ(−y) + 2) + γ(−y)− 2

γ3
dBy;

f3 =
√

2γ

∫ (k+1)η

kη

e−γ((k+1)η−y)dBy + γ4
√

2γ

∫ (k+1)η

kη

y − ηk

2γ4

(
2eγ(y−η(k+1))

(−γη(k + 1) + γy − 3) + γ(y − η(k + 1))(−γη(k + 1) + γy + 4) + 6

)
dBy

− γ2
√

2γ

∫ (k+1)η

kη

eγ(y−η(k+1))(−γη(k + 1) + γy − 1) + 1

γ2
dBy
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+ γ4
√

2γ

∫ (k+1)η

kη

1

2γ4

(
2γη(k + 1) + eγ(y−η(k+1))(γ(y − η(k + 1))

× (−γη(k + 1) + γy − 4) + 6)− 2γy − 6

)
dBy.

Next is the calculation for the conditional mean and covariance associated with the
fourth-order LMC algorithm in Section 2.1.

Lemma B.2. E
[
x(k+1)|x(k)

]
is a multivariate normal distribution with mean M(x(k)) =

(mi)0≤i≤3 and symmetric covariance matrix Σ = (σij · Id)0≤i,j≤3.

The entries mi, 0 ≤ i ≤ 3 and σij, 0 ≤ i, j ≤ 3 are provided below, noting that the constants
(µij)0≤i,j≤3 are defined in Lemma B.1.

m0 = −
∫ (k+1)η

kη

(
(k + 1)η − r

)
ḡ(r) dr − γ2

6

∫ (k+1)η

kη

(
y − (k + 1)η

)3
g̃(y) dy

+ θ(k)µ00 + v
(k)
1 µ01 + v

(k)
2 µ02 + v

(k)
3 µ03;

m1 = −
∫ (k+1)η

kη

ḡ(s) ds+
γ2

2

∫ η(k+1)

ηk

(
w − η(k + 1)

)2
g̃(w) dw

+ θ(k)µ10 + v
(k)
1 µ11 + v

(k)
2 µ12 + v

(k)
3 µ13;

m2 = γ

∫ (k+1)η

kη

(
(k + 1)η − r

)
ḡ(r) dr − γ3

6

∫ (k+1)η

kη

((
y − (k + 1)η

)3

−
6− 6eγ(y−(k+1)η + 3γ(y − (k + 1)η)

(
2 + γ(y − (k + 1)η)

)
γ3

)
dy

+ θ(k)µ20 + v
(k)
1 µ21 + v

(k)
2 µ22 + v

(k)
3 µ23;

m3 = −γ2

2

∫ (k+1)η

kη

(
w − η(k + 1)

)2
ḡ(w) dw

+ γ4

∫ (k+1)η

kη

(
1

2γ4

(
2eγ(z−(k+1)η)(−γ(k + 1)η + γz − 3)

+ γ(z − (k + 1)η)(−γ(k + 1)η + γz + 4) + 6
)

+
1

6γ4

(
γ((k + 1)η − z)(γ((k + 1)η − z)(γ(k + 1)η + γ(−z)− 3) + 6)

+ 6eγ(z−(k+1)η) − 6
))

g̃(z)dz

+ θ(k)µ30 + v
(k)
1 µ31 + v

(k)
2 µ32 + v

(k)
3 µ33.
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Furthermore,

σ00 =
γ3η5

10
− γ2η4

2
− e−2γη

γ2
+

4e−γη

γ2
− 3

γ2
+

4γη3

3
+ 2η2e−γη +

2η

γ
− 2η2;

σ11 =
2γ3η3

3
− 2γ2η2 − 4γηe−γη + 2γη − e−2γη + 1;

σ22 =
γ5η5

10
− 2γ3η3e−γη − 4γ3η3

3
− γ2η2e−2γη − 10γ2η2e−γη − 5γηe−2γη

− 12γηe−γη + 8γη − 13

2
e−2γη + 4e−γη +

5

2
;

σ33 =
γ5η7

210
− γ4η6

15
+

γ4η5

10
− 1

4
γ4η4e−2γη +

7γ3η5

15
+ γ3η4e−γη − 4γ3η4

3
− 7

2
γ3η3e−2γη

− 2γ3η3e−γη +
2γ3η3

3
− 2γ2η4 − 1

2
γ2η3e−2γη + 10γ2η3e−γη +

22γ2η3

3
− 77

4
γ2η2e−2γη

− 10γ2η2e−γη − 8γ2η2 − 21e−2γη

2γ2
+

192e−γη

γ2
− 363

2γ2
+ 4γη3e−γη + 6γη3 − 1

2
η2e−2γη

+ 32η2e−γη − 6γη2e−2γη + 36γη2e−γη − 24γη2 − 101

4
ηe−2γη + 84ηe−γη − 197

4
γηe−2γη

+ 8γηe−γη + 32γη − 9ηe−2γη

2γ
+

96ηe−γη

γ
+

159η

2γ
− 397

8
e−2γη + 88e−γη − 149e−2γη

4γ

+
204e−γη

γ
− 667

4γ
− 39η2

2
+

283η

4
− 307

8
;

σ01 = σ10 =
γ3η4

4
− γ2η3 − γη2e−γη + 2γη2 + 2ηe−γη +

e−2γη

γ
− 2e−γη

γ
+

1

γ
− 2η;

σ02 = σ20 = − 1

10
γ4η5 +

γ3η4

4
+ γ2η3e−γη +

γ2η3

3
+ 2γη2e−γη − 2γη2 − ηe−2γη + 2ηe−γη

− 5e−2γη

2γ
+

10e−γη

γ
− 15

2γ
+ 4η;

σ30 = σ03 =
γ4η6

60
− 3γ3η5

20
− 1

2
γ3η4e−γη +

γ3η4

4
+

2γ2η4

3
− 4γ2η3e−γη − 2γ2η3 +

2e−2γη

γ2

− 32e−γη

γ2
+

30

γ2
− γη3e−γη − 5γη3

3
− 8η2e−γη +

1

2
γη2e−2γη − 12γη2e−γη + 5γη2

+
7

2
ηe−2γη − 18ηe−γη +

ηe−2γη

2γ
− 18ηe−γη

γ
− 21η

2γ
+

27e−2γη

4γ
− 36e−γη

γ
+

117

4γ
+ 3η2 − 8η;

σ12 = σ21 = −1

4
γ4η4 +

γ3η3

3
+ 3γ 2η2e−γη + 2γ2η2 + γη e−2γη + 8γηe−γη − 4γ η +

5

2
e−2γη − 5

2
;

σ13 = σ31 =
γ4η5

20
− 5γ3η4

12
− γ3η3e−γη +

2γ3η3

3
+

5γ2η3

3
− 1

2
γ2η2e−2γη − 8γ2η2e−γη − 5γ2η2

− γη2e−γη − 3γη2 − 1

2
ηe−2γη − 12ηe−γη − 7

2
γηe−2γη − 22γηe−γη + 8γη − 27

4
e−2γη

− 4e−γη − 2e−2γη

γ
− 10e−γη

γ
+

12

γ
− 3η

2
+

43

4
;
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σ23 = σ32 = − 1

60
γ5η6 +

γ4η5

10
+

1

2
γ4η4e−γη − γ4η4

4
− γ3η4

12
+

1

2
γ3η3e−2γη + 5γ3η3e−γη

+
4γ3η3

3
− 4γ2η3

3
+

19

4
γ2η2e−2γη + 20γ2η2e−γη + 2γ2η2 +

1

2
γη2e−2γη + 5γη2e−γη

+ 6γη2 +
7

2
ηe−2γη + 18ηe−γη +

63

4
γηe−2γη + 24γηe−γη − 16γη +

143

8
e−2γη

− 12e−γη +
25e−2γη

4γ
+

2e−γη

γ
− 33

4γ
− 7η − 47

8
.

Proof. The formula for mi immediately follows from Lemma B.1, so that we only need to
show how to compute the entries of the covariance matrix. We have

E
[(
θ(k+1) − E

[
θ(k+1)|x(k)

])(
θ(k+1) − E

[
θ(k+1)|x(k)

])⊤∣∣∣x(k)
]
= E

[
f0(f0)

⊤] = σ00 · Id, (54)

where f0 is defined in Lemma B.1. Then σ00 on the right hand side of (54) can be
computed by Itô isometry and software. The remaining covariance entries σij’s are
obtained in the same way via E

[
fi(fj)

⊤] = σij · Id. □

Based on Lemma B.1, it possible to decompose x̄((k + 1)η) into higher and lower order
terms with respect to η, as the next lemma will show.

Lemma B.3. Recall the unique minimizer θ∗ of U , M(x(k)) from Lemma B.2 and the
Jacobian matrix

Jb(θ
∗, 0, . . . , 0) =


0 Id 0 0

−∇2U(θ∗)Id 0 γ 0
0 −γId 0 γ
0 0 −γId −γId

. Then it holds that

M(x(k)) = x(k) + ηJb(θ
∗, 0, . . . , 0)

(
x(k) − (θ∗, 0, . . . , 0)

)
+R

(
x(k) − (θ∗, 0, . . . , 0)

)
,

and

x(k+1) − (θ∗, 0, . . . , 0) =
(
x(k) − (θ∗, 0, . . . , 0)

)
+ ηJb(θ

∗, 0, . . . , 0)
(
x(k) − (θ∗, 0, . . . , 0)

)
+R

(
x(k) − (θ∗, 0, . . . , 0)

)
+ Fk,

where R is a 4d×4d matrix with |Rij| ≤ Cη2, 1 ≤ i, j ≤ 4d and C is a constant dependent

only on γ. Moreover, the entries fi’s of the 4d-dimensional vector Fk = (f0 f1 f3 f4)
⊤

are defined in Lemma B.1.

Proof. Without loss of generality, let us assume that the unique minimizer θ∗ = 0.

First, we will rewrite µij, 0 ≤ i, j ≤ 3 that appear in the formula of x̄((k + 1)η) in
Lemma B.1 and make explicit lower and higher order terms with respect to η.

µ00 = 1;

µ01 = η −
∞∑
k=2

γ4(−γη)k

k!
− γ2η

3

3!
+ γ4η

5

5!
+ γ4

(
η2

2γ3
− η3

6γ2
+

η4

24γ

)
= η −O(η2);
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µ02 = γ
η2

2!
− γ3η

4

4!
− γ3

(
∞∑
k=2

(−γη)k

γ4k!
− η2

2γ2
+

η3

6γ

)
= O(η2);

µ03 = −γ4η
5

5!
+

γη2

2
− γ4

(
η2

2γ3
− η3

6γ2
+

η4

24γ

)
= O(η2).

Similarly, we have

µ10 = 0, µ11 = 1 +O(η2), µ12 = −γη +O(η2), µ13 = O(η2),

µ20 = 0, µ21 = −γη +O(η2), µ22 = 1 +O(η2), µ23 = ηγ +O(η2),

µ30 = 0, µ31 = O(η2), µ32 = −γη +O(η2), µ33 = 1− γη +O(η2).

Next, we consider the integral terms containing ĝ and ḡ in the formula of x̄((k + 1)η) in
Lemma B.1. Since ∇U(θ∗) = ∇U(0) = 0, we can write

−
∫ (k+1)η

kη

ḡ(s)ds = −η∇U(θ(k)) +O(η2) = η∇2U(0)Idθ
(k) +O(η2).

Meanwhile, all the remaining integral terms containing ĝ and ḡ in x̄((k + 1)η) are of the
order O(η2).

Consequently, we can deduce the equation in the statement of this lemma from the above
calculations and Lemma B.1. □

We also need the following moment bounds.

Lemma B.4. Assume

η ≤ η∗ :=
ρ

2
∥M∥−1

op

∥∥M−1
∥∥−1

op

1

1 + 5γ2 + L2
, (55)

where the matrix M is provided in Example 2.3 and γ, ρ, L are from Theorem 2.1. Then
there exists a positive constant C1 such that for all k,

E
[∣∣x(k+1)

∣∣2α] ≤ (C1)
α(d+ 2α)α,

where C1 depends on γ, L from Condition H1 and c from Condition H2, but not on d.

This further implies

sup
t∈[kη,(k+1)η]

E
[
|x̂(t)|2 + |x̃(t)|2 + |x̄(t)|2 + |g̃(t)|2 + |ḡ(t)|2

]
≤ C2(d+ 1),

for a universal constant C2 ≥ 1 that depends on γ, L from Condition H1 and c from
Condition H2. C2 does not depend on the dimension d.

Proof. Part 1 of the proof:

Without loss of generality, let us assume θ∗ = 0 and denote Jb(0) = Jb(θ
∗, 0, . . . , 0). Let

wk ∼ N (0, I4d) then per Lemma B.2 and Lemma B.3,

E
[∣∣x(k+1)

∣∣2α
M

]
= E

[∣∣∣M1/2M(x(k)) + (MΣ)1/2wk

∣∣∣2α]
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≤
2α∑
j=0

(
2α

j

)
E
[∣∣M1/2M(x(k))

∣∣j]E[∣∣∣(MΣ)1/2wk

∣∣∣2α−j
]

≤
2α∑
j=0

(
2α

j

)
E
[∣∣M1/2M(x(k))

∣∣2α]j/2αE[∣∣∣(MΣ)1/2wk

∣∣∣2α]1−j/2α

=

(
E
[∣∣M(x(k))

∣∣2α
M

]1/α
+ E

[∣∣∣(MΣ)1/2wk

∣∣∣2α]1/α)2α

. (56)

Let us study the first term on the right hand side. Lemma B.3 and (8) imply that∣∣M(x(k))
∣∣2
M

=
∣∣x(k) + ηJb(0)x

(k)
∣∣2
M

=
∣∣x(k)

∣∣2
M

+ η
(
x(k)
)⊤(

Jb(0)
⊤M +MJb(0)

)
x(k) + η2

(
x(k)
)⊤

Jb(0)
⊤MJb(0)x

(k)

≤
∣∣x(k)

∣∣2
M

+ η(x(k))⊤(−2ρ)Mx(k) + η2
∥∥Jb(0)⊤MJb(0)

∥∥
op

∥∥M−1
∥∥
op

∣∣x(k)
∣∣2
M

≤ (1− 2ηρ)
∣∣x(k)

∣∣2
M

+ η2 ∥Jb(0)∥2op ∥M∥op
∥∥M−1

∥∥
op

∣∣x(k)
∣∣2
M
.

At this point, notice that the operator norm is bounded from above by the Frobenius norm,
so that combining with L-smoothness of U and the explicit form of Jb in Lemma B.3, we
get ∥Jb(0)∥2op ≤ 1 + 5γ2 + L2. ∥M∥op and ∥M−1∥op can be computed using the explicit
form of M in Example 2.3. Then assuming η < η∗ as defined in the statement of the
lemma, we arrive at

E
[∣∣M(x(k))

∣∣2α
M

]1/α
≤
(
1− 3

2
ηρ

)α

E
[∣∣x(k)

∣∣2α
M

]
.

This can be combined with (56) and (20) to get the desired bound on E
[∣∣x(k+1)

∣∣2α].
Part 2 of the proof:

In this part, we will use the result from Part 1 and the explicit formula at the begin-
ning of Appendix B to bound supt∈[kη,(k+1)η] E

[
|x̂(t)|2 + |x̃(t)|2 + |x̄(t)|2 + |g̃(t)|2 + |ḡ(t)|2

]
.

The upcoming argument is rather tedious, so we will only demonstrate how to bound
sups∈[kη,(k+1)η] E

[
|ṽ1(t)|2

]
. By Equation (53), we can write

sup
t∈[kη,(k+1)η]

E
[
|ṽ1(t)|2

]
≤ 5

(
E
[∣∣∣v(k)1

∣∣∣2]+ γ2η2E
[∣∣∣v(k)2

∣∣∣2]+ γ4η
4

4

(
E
[∣∣∣v(k)1

∣∣∣2]+ E
[∣∣∣v(k)3

∣∣∣2])
+ η2 sup

t∈[kη,(k+1)η]

E[|g̃(t)|]2
)
.

Lemma 2.16 and L-smoothness of U implies

E[|g̃(t)|]2 ≤
(
Lα

α!

)2

sup
t∈[kη,(k+1)η]

E
[∣∣∣θ̂(t)∣∣∣2α]+ L2

α sup
t∈[kη,(k+1)η]

E
[∣∣∣θ̂(t)∣∣∣2],
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where α is from Condition H2. Moreover, we also have from (52) and Part 1 of this proof
that

sup
t∈[kη,(k+1)η]

E
[∣∣∣θ̂(t)∣∣∣2α] ≤ E

[(
2
∣∣θ(k)∣∣ ∨ 2

∣∣∣v(k)1

∣∣∣)2α]
≤ 4E

[∣∣θ(k)∣∣2α]+ 4E
[∣∣∣v(k)1

∣∣∣2α] ≤ 8(C1)
α(d+ 2α)α.

Condition H2 then says
(
Lα

α!

)2
supt∈[kη,(k+1)η] E

[∣∣∣θ̂(t)∣∣∣2α] ≤ cdη2. Thus, we arrive at

E[|g̃(t)|]2 ≤ cdη2 + L28C1(d+ 2).

Hence,

sup
t∈[kη,(k+1)η]

E
[
|ṽ1(t)|2

]
≤ 5

(
1 + γ2η2 + γ4η

4

4

)
4C1(d+ 2) + 5η2

(
cdη2 + L28C1(d+ 2)

)
.

This completes the proof. □

Next are the proofs of Lemma 2.16 and Lemma 2.17 in the main paper.

Proof of Lemma 2.16. By Condition H1 and [Car71, Theorem 5.6.2], we have

|∇U(x)− Pα−1(x)| ≤ Lα
|x|α

α!
.

This leads to

sup
t∈[kη,(k+1)η]

E
[∣∣∣∇U(θ̂(t))− g̃(t)

∣∣∣2] = sup
t∈[kη,(k+1)η]

E
[∣∣∣∇U(θ̂(t))− Pα−1(θ̂(t))

∣∣∣2]
≤
(
Lα

α!

)2

sup
t∈[kη,(k+1)η]

E
[∣∣∣θ̂(t)2α∣∣∣].

The bound on supt∈[kη,(k+1)η] E
[∣∣∣∇U(θ̃(t))− ḡ(t)

∣∣∣2] is obtained in the same way. □

Proof of Lemma 2.17. First part of the proof: we will bound the difference of the
components of x̃(t)− x̂(t) in L2-norm for t ∈ (kη, (P = 1)η].

We start with ṽ1(t)− v̂1(t) =
∫ t

kη
(−g̃(s) + γv̂2(s)) ds, which combined with the moment

bounds in Lemma B.4 leads to

E
[
|ṽ1(t)− v̂1(t)|2

]
≤ C2(d+ 1)(γ + 1)2(t− kη)2.

Next, θ̃(t)− θ̂(t) =
∫ t

kη
(ṽ1(s)− v̂1(s)) ds combined with Lemma B.4 leads to

E
[∣∣∣θ̃(t)− θ̂(t)

∣∣∣2] ≤ C2(d+ 1)(γ + 1)2(t− kη)4.
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Moreover,

ṽ2(t)− v̂2(t) =

∫ t

kη

(
−γ(ṽ1(s)− v̂1(s)) + γ

(
v̂3(s)− v

(k)
3

))
ds.

We know v̂3(t) − v
(k)
3 =

∫ t

kη
(−γv̂3(s)− γv̂2(s)) ds +

√
2γ(Bt −Bkη) which along with

Lemma B.4 imply the bound

E
[∣∣∣v̂3(t)− v

(k)
3

∣∣∣2] ≤ C2(d+ 1)(2γ +
√
2γ)2(t− kη).

Consequently,

E
[
|ṽ2(t)− v̂2(t)|2

]
≤ C2(d+ 1)(γ + 1)2(t− kη)4 + C2(d+ 1)(2γ +

√
2γ)2(t− kη)3

≤ C2(d+ 1)
(
(γ + 1)2 + (2γ +

√
2γ)2

)
(t− kη)3. (57)

Finally, ṽ3(t)− v̂3(t) =
∫ t

kη
−γe−γs(ṽ2(s)− v̂2(s))ds and the moment bound in Lemma B.4

imply

E
[
|ṽ3(t)− v̂3(t)|2

]
≤ C2(d+ 1)

(
(γ + 1)2 + (2γ +

√
2γ)2

)
(t− kη)5.

Second part of the proof: We will bound the difference of the components of x̄(t)− x̃(t)
in L2 norm for t ∈ (kη, (k + 1)η].

We start with

v̄1(t)− ṽ1(t) =

∫ t

kη

−(ḡ(s)− g̃(s))ds+

∫ t

kη

γ(ṽ2(s)− v̂2(s))ds

=

∫ t

kη

(
−
(
ḡ(s)−∇U(θ̃(s))

)
−
(
∇U(θ̃(s))−∇U(θ̂(s))

)
−
(
g̃(s)−∇U(θ̂(s))

))
ds+

∫ t

kη

γ(ṽ2(s)− v̂2(s))ds. (58)

The bound in (57) leads to

E

[∣∣∣∣∫ t

kη

γ(ṽ2(s)− v̂2(s))ds

∣∣∣∣2
]
≤ C2(d+ 1)γ2

(
(γ + 1)2 + (2γ +

√
2γ)2

)
(t− kη)5.

Meanwhile, Lemma 2.16, Lemma B.4 and Condition H2 say

E

[∣∣∣∣∫ t

kη

(
ḡ(s)−∇U(θ̃(s))

)
ds

∣∣∣∣2
]
≤
(
Lα

α!

)2

(C1)
α(d+ 2α)αη2 ≤ cdη9. (59)

Similarly, we have E
[∣∣∣∫ t

kη

(
g̃(s)−∇U(θ̂(s))

)
ds
∣∣∣2] ≤ cdη9. Also based on the first part

of the proof and L-smoothness of U in Condition H1,

E

[∣∣∣∣∫ t

kη

(
∇U(θ̃(s))−∇U(θ̄(s))

)
ds

∣∣∣∣2
]
≤ C2(d+ 1)L2(γ + 1)2(t− kη)6.
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By combining the previous calculations, we get for any t ∈ (kη, (k + 1)η] that

E
[
|v̄1(t)− ṽ1(t)|2

]
≤ C2(d+ 1)

(
γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
+ c
)
η5.

Next, θ̃(t)− θ̄(t) =
∫ t

kη
(ṽ1(s)− v̄1(s)) ds leads to

E
[∣∣∣θ̃(t)− θ̄(t)

∣∣∣2] ≤ C2(d+ 1)
(
γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
+ c
)
η7.

Moreover, ṽ2(t)− v̄2(t) =
∫ t

kη
(−γ(ṽ1(s)− v̄1(s)) + γ(v̂3(s)− ṽ3(s))) ds leads to

E
[
|v̄2(t)− ṽ2(t)|2

]
≤ C2(d+ 1)γ2

(
γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
+ c
)
η7

+ C2(d+ 1)γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
η7.

Finally, ṽ3(t)− v̄3(t) =
∫ t

kη
−γe−γs(ṽ2(s)− v̄2(s))ds implies

E
[
|v̄3(t)− ṽ3(t)|2

]
≤ C2(d+ 1)γ4

(
γ2
(
(γ + 1)2 + (2γ +

√
2γ)2

)
+ c
)
η9

+ C2(d+ 1)γ4
(
(γ + 1)2 + (2γ +

√
2γ)2

)
η9.

This completes the proof. □

Appendix C. Details of P -th Order Langevin Monte Carlo Algorithm

The following is a generalized version of Lemma B.1.

Lemma C.1. Choose any positive integers i and j in [1, P − 1]. Then

1. the auxiliary process {vstji (t), t ≥ 0} in Section 2.2 has the form

v
stj
i (t) =

∑
1≤ℓ≤P−1

v
(k)
ℓ µ

stj
i,ℓ (t) + θ(k)µ

stj
i,P (t) + 1{i≥P−j}

∫ t

kη

h
stj
i (s, t)dBs

+
∑
2≤ℓ≤j

∫ t

kη

κ
stj
i,ℓ (s, t)g

stℓ(s)ds, (60)

such that

a. The kernel h
stj
i (s, t) is deterministic and has the form

h
stj
i (s, t) =

∑
0≤m≤M1

a1,me
b1,m(t−s)+c1,m(s− kη)d1,m , (61)

where M1 is a positive integer; d1,m’s are non-negative integers; a1,m, b1,m, c1,m’s
are rational functions in variables k, η, γ, t, i.e. they are ratios of multivariate
polynomials in k, η, γ, t. 3

3The coefficients a1,m, b1,m, c1,m and d1,m on the right hand side of (61) depend on i, j; however we
hide this dependence to lighten the notations. We do the same thing in Equation (62) and Equation (63).
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b. µ
stj
i,ℓ (t) has the form

µ
stj
i,ℓ (t) =

∑
0≤m≤M2

a2,me
b2,m(t−kη)+c2,m(t− kη)d2,m , (62)

where M2 is a positive integer; a2,m, b2,m, c2,m’s are rational functions in
variables k, η, γ; and d2,m’s are non-negative integers.

c. κ
stj
i,ℓ (s, t) is deterministic and has the form

κ
stj
i,ℓ (s, t) =

∑
0≤m≤M3

a3,me
b3,m(t−s)+c3,md3,m(s), (63)

where M3 is a positive integer; d3,m’s are polynomial in s; a3,m, b3,m, c3,m’s
are rational functions in variables k, η, γ, t, i.e. they are ratios of multivariate
polynomials in k, η, γ, t.

2. the auxiliary process {θstj(t), t ≥ 0} in Section 2.2 has the form

θstj(t) =
∑

1≤ℓ≤P−1

v
(k)
ℓ µ

stj
P,ℓ(t) + θ(k)µ

stj
P,P (t) + 1{j=P−1}

∫ t

kη

h
stj
P (s, t)dBs

+
∑
2≤ℓ≤j

∫ t

kη

κ
stj
P,ℓ(s, t)g

stℓ(s)ds, (64)

such that µP,ℓ(t) has a similar form to (62), while h
stj
P (s, t) and κ

stj
P,ℓ(s, t) have

similar forms to respectively (61) and (63).

Proof. We will employ an induction argument.

Step 1: Stage j = 1.

We will verify that vst1n (t), 1 ≤ n ≤ P − 1 and θst1(t) have respectively the general
forms (60) and (64).

We have vst11 (t) = v
(k)
1 so that

θst11 (t) = v
(k)
1 (t− kη),

and

vst12 (t) = v
(k)
2 − γ

∫ t

kη

vst11 (s)ds+ γv
(k)
3 (t− kη) = v

(k)
2 − γ(t− kη)v

(k)
1 + γv

(k)
3 (t− kη).

(65)

Proceed similarly for increasing n to get for 3 ≤ n ≤ P − 2,

vst1n (t) = v(k)n − γ

∫ t

kη

vst1n−1(s)ds+ γv
(k)
n−1(t− kη) =

P−1∑
ℓ=1

aℓ(t− kη)dℓv
(k)
ℓ , (66)

where aℓ’s are polynomials in γ and dℓ’s are non-negative integers. If we set µst1
n,ℓ(t) :=

aℓ(t− kη)dℓ then this coefficient is of the form described in the statement of the lemma.
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Moreover, the formula (66) in the case n = P − 2 implies

vst1P−1(t) = e−γ(t−kη)v
(k)
P−1 − γ

∫ t

kη

e−γ(t−s)vst1P−2(s)ds+
√

2γ

∫ t

kη

e−γ(t−s)dBs

= e−γ(t−kη)v
(k)
P−1 +

√
2γ

∫ t

kη

e−γ(t−s)dBs −
P−1∑
ℓ=1

v
(k)
ℓ γaℓ

∫ t

kη

e−γ(t−s)(s− kη)dℓds.

Via integration by parts, it is easy to see∫ t

kη

e−γ(t−s)(s− kη)dℓds =
∑
j

e−γ(t−kη)aℓ,j(t− kη)dℓ,j , (67)

where dℓ,j’s are non-negative integers and aℓ,j’s are polynomials in γ. Setting

µst1
P−1,ℓ(t) := γaℓ

∑
j

e−γ(t−kη)aℓ,j(t− kη)dℓ,j ,

for 1 ≤ ℓ ≤ P − 2 and

µst1
P−1,P−1(t) := γaP−1

∑
j

e−γ(t−kη)aP−1,j(t− kη)dP−1,j + e−γ(t−kη),

we arrive at

vst1P−1(t) =
√

2γ

∫ t

kη

e−γ(t−s)dBs +
P−1∑
ℓ=1

v
(k)
ℓ µst1

P−1,ℓ(t). (68)

Finally, notice that among θst11 (t) and vst1n (t), 1 ≤ n ≤ P − 1, the Itô integral only appears
in vst1P−1(t), which explains the indicator functions in (60) and (64) when j = 1.

Step 2: Stage j = 2.

We will verify that vst2n (t), 1 ≤ n ≤ P − 1 and θst2(t) have respectively the general
forms (60) and (64).

We have based on (65) that

vst21 (t) = v
(k)
1 −

∫ t

kη

gst2(s)ds+ γ

∫ t

kη

vst12 (s)ds

= v
(k)
1 −

∫ t

kη

gst2(s)ds− γ2v
(k)
1

(t− kη)2

2
+ γ2v

(k)
3

(t− kη)2

2
. (69)

This implies

θst2(t) = θ(k) −
∫ t

kη

vst21 (s)ds

= θ(k) −
∫ t

kη

∫ s2

kη

gst2(s1)ds1ds2 − γ3v
(k)
1

(t− kη)3

6
+ γ2v

(k)
3

(t− kη)3

6
,
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noting that
∫ t

kη

∫ s2
kη

gst2(s1)ds1ds2 =
∫ t

kη
(t− s1)g

st2(s1)ds1. Per the previous calculations

(69) and (66) in the case n = 3, we can further write

vst22 (t) = v
(k)
2 − γ

∫ t

kη

vst21 (s)ds+ γ

∫ t

kη

vst13 (s)ds

= v
(k)
2 +

(
− γθ(k) + γ

∫ t

kη

(t− s1)g
st2(s1)ds1 + γ4v

(k)
1

(t− kη)4

4!
− γ3v

(k)
3

(t− kη)4

4!

)
+

(
γ

P−1∑
i=1

(t− kη)a3,i+1

a3,i + 1
v
(k)
i b3,i(γ)

)
,

which is of the form described in the statement of the lemma. Proceed similarly for
increasing n, 3 ≤ n ≤ P − 3 to get

vst2n (t) = v(k)n − γ

∫ t

kη

vst2n−1(s)ds+ γ

∫ t

kη

vst1n+1(s)ds

=
∑

1≤ℓ≤P−1

v
(k)
ℓ µst2

i,ℓ (t) + θ(k)µst2
i,P (t) + en

∫ t

kη

∫ sn

kη

· · ·
∫ s2

kη

gst2(s1)ds1 . . . dsn−1dsn, (70)

where en are rational functions in variables k, η, γ. Moreover, the last term can be
simplified as

en

∫ t

kη

∫ sn

kη

· · ·
∫ s2

kη

gst2(s1)ds1 . . . dsn−1dsn

= en

∫ t

kη

∫ t

s1

∫ sn

s1

. . .

∫ s3

s1

gst2(s1)ds2 . . . dsnds1 =

∫ t

kη

p(s1)g
st2(s1)ds1,

where p is a polynomial in s1.

Next, we have

vst2P−2(t) = v
(k)
P−2 − γ

∫ t

kη

vst2P−3(s)ds+ γ

∫ t

kη

vst1P−1(s)ds.

We will only expand the term
∫ t

kη
vst2P−3(s)ds using (70) when n = P − 3. The term∫ t

kη
vst1P−1(s)ds can be handled in similar fashion using (68):∫ t

kη

vst2P−3(s)ds = v
(k)
P−3(t− kη) +

∑
1≤ℓ≤P−1

v
(k)
ℓ

∫ t

kη

µst2
i,ℓ (s)ds+ θ(k)

∫ t

kη

µst2
i,P (s)ds

+ en

∫ t

s2=kη

∫ s2

s1=kη

p(s1)g
st2(s1)ds1ds2,

where we can further compute that∫ t

s2=kη

∫ s2

s1=kη

p(s1)g
st2(s1)ds1ds2 = en

∫
kηt
∫ t

s1

p(s1)g
st2(s1)ds2ds1

= en

∫ t

kη

(t− s1)p(s1)g
st2(s1)ds1.
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Hence, we arrive at

vst2P−2(t)

=
∑

1≤ℓ≤P−1

v
(k)
ℓ µst2

P−2,ℓ(t) + θ(k)µst2
P−2,P (t) +

∫ t

kη

hst2
P−2(s, t)dBs +

∫ t

kη

κst2
P−2(s, t)g

st2(s)ds

as described in (60).

Finally, we have

vst2P−1(t) = e−γ(t−kη)v
(k)
P−1 − γ

∫ t

kη

e−γ(t−s)vst2P−2(s)ds+
√
2γ

∫ t

kη

e−γ(t−s)dBs.

The second term on the right hand side can be expanded by plugging in the formula for
vst2P−2(s), then applying (67) and the fact that

∫ t

kη

∫ s3
kη

∫ s2
kη

e−γ(t−s3)e−γ(s2−s1)dBs1ds2ds3 =∫ t

kη

∫ t

s1

∫ s3
s1

e−γ(t−s3)e−γ(s2−s1)ds2ds3dBs1 =
∫ t

kη

(
1
γ2 − e−γ(t−s1)

γ2 + s1e−γ(t−s1)

γ
− te−γ(t−s1)

γ

)
dBs1 ,

and also that
∫ t

kη

∫ s2
kη

e−γ(t−s2)p(s1)g
st2(s1)ds1ds2 =

∫ t

kη

∫ t

s1
e−γ(t−s2)p(s1)g

st2(s1)ds2ds1 =∫ t

kη
(1/γ)e−γ(t−s1)p(s1)g

st2(s1)ds1. Consequently, v
st2
P−1(t) can be written as (60).

Finally, we note that among θst21 (t) and vst2n (t), 1 ≤ n ≤ P − 1, Itô integrals only appear
in the formulas of vst2P−1(t) and vst2P−2(t), which explains the indicator functions in (60) and
(64) when j = 2. This completes the proof for Stage j = 2.

Step 3: Induction argument.

As the induction hypothesis, we assume the statement of the lemma holds for Stage j
and verify Stage j + 1. The proof is similar to Step 2 above (proceeding from Stage 1 to
Stage 2) and is therefore omitted. □

Lemma C.2. E
[
x(k+1)|x(k)

]
follows a multivariate normal distribution in RPd whose

mean vector and covariance matrix can be determined from Lemma C.1.

Proof. Lemma C.1 provides us with the formulas for the components x(k+1) = xstP−1((k +
1)η). Based on those formulas, we can see that E

[
x(k+1)|x(k)

]
follows a multivariate normal

distribution in RPd. From there, calculating the mean and covariance is straightforward
and is the same as the proof of Lemma B.2. □

The following is a general version of Lemma B.3.

54



Lemma C.3. Recall the unique minimizer θ∗ of U and the Pd× Pd Jacobian matrix

Jb(θ
∗, 0, . . . , 0) =



0d Id 0d · · · · · · · · · · · · · · · 0d
−∇U2(θ∗)Id 0d γId 0d · · · · · · · · · · · · 0d

0d −γId 0d γId 0d · · · · · · · · · 0d
0d 0d −γId 0d γId 0d · · · · · · 0d
0d 0d 0d −γId 0d γId 0d · · · 0d
...

. . . . . . . . . . . . . . . . . . . . .
...

0d · · · · · · · · · · · · · · · −γId 0d γId
0d · · · · · · · · · · · · · · · 0d −γId −γId


.

Then it holds for Stage j, 1 ≤ j ≤ P − 1 that

xstj(t)− (θ∗, 0, . . . , 0) =
(
x(k) − (θ∗, 0, . . . , 0)

)
+ (t− kη)Jb(θ

∗, 0, . . . , 0)

·
(
x(k) − (θ∗, 0, . . . , 0)

)
+R(t)

(
x(k) − (θ∗, 0, . . . , 0)

)
+ Fk(t), (71)

where R(t) is a Pd × Pd matrix with |Rij| (t) ≤ C(t − kη)2, 1 ≤ i, j ≤ 4d and C is
a constant that depends only on γ, P . Moreover, Fk(t) is the Pd-dimensional vector

(fP (t) f1(t) f2(t) f3(t) · · · fP−1(t))
⊤ where for each i, fi(t) :=

∫ t

kη
h
stj
i (s, t)dBs is

the d-dimensional Itô integral defined in Lemma C.1.

Consequently, we have

x(k+1) − (θ∗, 0, . . . , 0) =
(
x(k) − (θ∗, 0, . . . , 0)

)
+ ηJb(θ

∗, 0, . . . , 0)
(
x(k) − (θ∗, 0, . . . , 0)

)
+R((k + 1)η)

(
x(k) − (θ∗, 0, . . . , 0)

)
+ Fk((k + 1)η). (72)

Proof. Since x(k+1) = xstP−1((k + 1)η), it is sufficient to prove (71). Without loss of
generality, we assume the unique minimizer of U is θ∗ = 0. The proof follows an induction
argument.

Step 1: The Base Case j = 2.

Per the proof of Lemma C.1, we can deduce that

vst21 (t) = v
(k)
1 −

∫ t

kη

gst2(s)ds+ γ

∫ t

kη

vst12 (s)ds

= v
(k)
1 − (t− kη)∇2U(0)θ(k) + (t− kη)v

(k)
2 +O

(
(t− kη)2

) ∑
i ̸=1,2

v
(k)
i +

∫ t

kη

hst2
1 (s, t)dBs.

Next, we have

θst2(t) = θ(k) +

∫ t

kη

vst11 (s)ds

= θ(k) + (t− kη)v
(k)
1 +O

(
(t− kη)2

)∑
i ̸=1

v
(k)
i +

∫ t

kη

hst2
P (s, t)dBs.

Similarly,

vst2n (t) = v(k)n − γ

∫ t

kη

vst2n−1(s)ds+ γ

∫ t

kη

vst1n+1(s)ds
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= v(k)n − (t− kη)γv
(k)
n−1 + (t− kη)γv

(k)
n+1

+O
(
(t− kη)2

) ∑
i/∈{n−1,n,n+1}

v
(k)
i +

∫ t

kη

hst2
n (s, t)dBs, 2 ≤ n ≤ P − 2;

vst2P−1(t) = v
(k)
P−1 − (t− kη)γv

(k)
P−2 − (t− kη)γv

(k)
P−1

+O
(
(t− kη)2

) ∑
i/∈{P−2,P−1}

v
(k)
i +

∫ t

kη

hst2
P−1(s, t)dBs.

At this point, we can conclude (71) holds for Stage j = 2.

Step 2: The Induction Argument.

We assume (71) is true up to Stage j and verify Stage j + 1. The argument is similar to
the one in Step 1 and is therefore omitted. The proof is complete. □

The upcoming moment bounds are similar to the ones in Lemma B.4.

Lemma C.4. Assume

η ≤ η∗∗ :=
ρ

2
∥M∥−1

op

∥∥M−1
∥∥−1

op

1

1 + (1 + (P − 2)2)γ2 + L2
, (73)

where the matrix M and γ, ρ, L are from Theorem 2.1. Then there exists a positive

constant C̃1 such that for all k,

E
[∣∣x(k+1)

∣∣2α] ≤ (C̃1

)α
(d+ 2α)α,

where C̃1 depends on P and γ, L from Condition H1 and c from Condition H2, and not
on d. This further implies

sup
1≤j,n≤P−1

sup
s∈[kη,(k+1)η]

E
[∣∣vstjn (s)

∣∣2 + ∣∣θstjn (s)
∣∣2]+ sup

2≤j≤P−1
sup

s∈[kη,(k+1)η]

E
[∣∣gstj(s)∣∣2]

≤ C̃2(d+ 1),

for a universal constant C̃2 > 1 that depends only on P, γ and L.

Proof. Similarly as how we apply Lemma B.3 to get the moment bounds in Lemma B.4
in Lemma B.4 for fourth-order LMC algorithm, we can apply Lemma C.3 to derive the
moment bounds for P -th order LMC algorithm. The proof is very similar to the proof of
Lemma B.4 and is therefore omitted. □

Proof of Lemma 2.24. Step 1: j = 1

We start with vst1n (t)− v
(k)
1 = 0, t ∈ (kη, (k + 1)η]. Next,

vst12 (t)− v
(k)
2 =

∫ t

kη

(
−γvst11 (s) + γv

(k)
3

)
ds,
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which combined with the second moment bounds in Lemma C.4 lead to

sup
t∈(kη,(k+1)η]

E
[∣∣∣vst12 (t)− v

(k)
2

∣∣∣2] ≤ η2γ2

(
E
[∣∣∣v(k)1

∣∣∣2]+ E
[∣∣∣v(k)3

∣∣∣2]) ≤ Cst1
2 dη2.

Proceed similarly for increasing n with 3 ≤ n ≤ P − 2 to obtain

sup
t∈(kη,(k+1)η]

E
[∣∣vst1n (t)− v(k)n

∣∣2] ≤ η2γ2

(
sup

t∈(kη,(k+1)η]

E
[∣∣vst1n−1(t)

∣∣2]+ E
[∣∣∣v(k)n+1

∣∣∣2])
≤ Cst1

n dη2.

Next, we have vst1P−1(t) = v
(k)
P−1 +

∫ t

kη

(
−γvst1P−2(s) + γv

(k)
P−1

)
ds +

√
2γ(Bt −Bkη) which

along with Lemma C.4 imply

sup
t∈(kη,(k+1)η]

E
[∣∣∣vst1P−1(t)− v

(k)
P−1

∣∣∣2] ≤ Cst1
P−1dη.

Finally, Lemma C.4 implies

sup
t∈(kη,(k+1)η]

E
[∣∣θst1(t)− θ(k)

∣∣2] ≤ η2γ2 sup
t∈(kη,(k+1)η]

E
[∣∣∣v(k)1

∣∣∣2] ≤ Cst1
P dη2.

Step 2: j = 2 and P = 3

We have vst21 (t)−vst11 (t) = vst21 (t)−v
(k)
1 =

∫ t

kη

(
−gst2(s) + γvst12 (s)

)
ds so that by Lemma C.4,

sup
t∈(kη,(k+1)η]

E
[∣∣vst21 (t)− vst11 (t)

∣∣2]
≤ η2 sup

t∈(kη,(k+1)η]

E
[∣∣gst2(t)∣∣2]+ γ2η2 sup

t∈(kη,(k+1)η]

E
[∣∣vst12 (t)

∣∣2] ≤ Cst2
1 dη2. (74)

Moreover, vst22 (t)− vst12 (t) =
∫ t

kη

(
−γ
(
vst21 (s)− vst11 (s)

)
+ γ
(
v
stj
3 (s)− v

(k)
3 (s)

))
ds so that

using (74) and the calculation in Step 1, we get

sup
t∈(kη,(k+1)η]

E
[∣∣vst22 (t)− vst12 (t)

∣∣2] ≤ Cst2
2 dη4.

Finally, by (74), we get

sup
t∈(kη,(k+1)η]

E
[∣∣θst2(t)− θst1(t)

∣∣2] ≤ η2 sup
t∈(kη,(k+1)η]

E
[∣∣vst21 (t)− vst11 (t)

∣∣2] ≤ Cst2
3 dη4.

Step 3: j = 2 and P ≥ 4

In the same way as (74), we get

sup
t∈(kη,(k+1)η]

E
[∣∣vst21 (t)− vst11 (t)

∣∣2] ≤ Cst2
1 dη2. (75)

Next, (75) and the calculation in Step 1 imply that

sup
t∈(kη,(k+1)η]

E
[∣∣vst22 (t)− vst12 (t)

∣∣2]
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≤ γ2η2 sup
t∈(kη,(k+1)η]

(
E
[∣∣vst21 (t)− vst11 (t)

∣∣2]+ E
[∣∣∣vst23 (t)− v

(k)
3

∣∣∣2]) ≤ Cst2
2 dη4.

Proceed similarly for increasing n, 3 ≤ n ≤ P − 3 to obtain

sup
t∈(kη,(k+1)η]

E
[∣∣vst2n (t)− vst1n (t)

∣∣2]
≤ η2γ2 sup

t∈(kη,(k+1)η]

(
E
[∣∣vst2n−1(t)− vst1n−1(t)

∣∣2]+ E
[∣∣∣vst1n+1(t)− v

(k)
n+1

∣∣∣2]) ≤ Cst2
n dη4. (76)

Furthermore, (76) and the calculation in Step 1 lead to

sup
t∈(kη,(k+1)η]

E
[∣∣vst2P−2(t)− vst1P−2(t)

∣∣2]
≤ η2γ2 sup

t∈(kη,(k+1)η]

(
E
[∣∣vst2P−3(t)− vst1P−3(t)

∣∣2]+ E
[∣∣∣vst1P−1(t)− v

(k)
P−1

∣∣∣2])
≤ η2γ2 sup

t∈(kη,(k+1)η]

(
Cst2

P−3dη
2 + Cst2

P−1dη
)
≤ Cst2

P−2dη
3. (77)

We also have from (77) that

sup
t∈(kη,(k+1)η]

E
[∣∣vst2P−1(t)− vst1P−1(t)

∣∣2]
≤ sup

t∈(kη,(k+1)η]

E

[∣∣∣∣−γ

∫ t

kη

e−γs
(
vst2P−2(s)− vst1P−2(s)

)
ds

∣∣∣∣2
]
≤ Cst2

P−1dη
5. (78)

Finally, (75) implies

sup
t∈(kη,(k+1)η]

E
[∣∣θst2(t)− θst1(t)

∣∣2] ≤ η2 sup
t∈(kη,(k+1)η]

E
[∣∣vst21 (t)− vst11 (t)

∣∣2] ≤ C
stj
P dη4.

This completes the proof. □

Proof of Lemma 2.25. We will prove the formulas in Parts a), b), c) and d) for Stage j ≥ 3
via induction. We will assume P ≥ 4, since there is no Stage 3 when P = 3.

First half of the proof: checking the base case j = 3

The first half of the proof will consist of four steps.

Step 1: Verifying Part a) for Stage j = 3.

We have

vst31 (t)− vst21 (t)

=

∫ t

kη

(
−
(
gst3(s)− gst2(s)

)
+ γ
(
v
stj
2 (s)− vst12 (s)

))
ds

=

∫ t

kη

(
−
(
gst3(s)−∇U

(
θst2(s)

))
−
(
∇U

(
θst2(s)

)
−∇U

(
θst1(s)

))
−
(
∇U

(
θst1(s)

)
− gst2(s)

))
ds+ γ

∫ t

kη

(
vst22 (s)− vst12 (s)

)
ds.
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so that by L-smoothness of U ,

sup
t∈(kη,(k+1)η]

E
[∣∣vst31 (t)− vst2(t)

∣∣2]
≤ η2 sup

t∈(kη,(k+1)η]

(
E
[∣∣gst3(t)−∇U

(
θst2(t)

)∣∣2]+ E
[∣∣∇U

(
θst1(t)

)
− gst2(t)

∣∣2]
+ L2E

[∣∣θst2(s)− θst1(t)
∣∣2]+ γ2E

[∣∣vst22 (t)− vst12 (t)
∣∣2]). (79)

Note the third and last terms on the right hand side in (79) are bounded in Lemma C.4 as

E
[∣∣θst2(s)− θst1(t)

∣∣2] ≤ Cst2
P dη4 and E

[∣∣vst22 (t)− vst12 (t)
∣∣2] ≤ Cst2

2 dη4.

Regarding the first two terms on the right hand side in (79), similar to the argument
at (59), Condition H2 indicates there exists a positive constant c such that

sup
t∈(kη,(k+1)η]

(
E
[∣∣gst3(t)−∇U

(
θst2(t)

)∣∣2]+ E
[∣∣∇U

(
θst1(t)

)
− gst2(t)

∣∣2]) ≤ cdη2P−1.

Thus, we get

sup
t∈(kη,(k+1)η]

E
[∣∣vst31 (t)− vst2(t)

∣∣2] ≤ C
stj+1

1 dη6. (80)

Next, we have vst32 (t) − vst22 (t) =
∫ t

kη

(
−γ
(
vst31 (s)− vst21 (s)

)
+ γ
(
vst23 (s)− vst13 (s)

))
ds, so

that

sup
t∈(kη,(k+1)η]

E
[∣∣vst32 (t)− vst22 (t)

∣∣2]
≤ γ2η2 sup

t∈(kη,(k+1)η]

(
E
[∣∣vst31 (t)− vst21 (t)

∣∣2]+ E
[∣∣vst23 (t)− vst13 (t)

∣∣2]). (81)

The first term on the right hand side in (81) is bounded at (80), while the second term in

(81) is bounded in Lemma 2.24 as E
[∣∣vst23 (t)− vst13 (t)

∣∣2] ≤ Cst2
3 dη4. Then

sup
t∈(kη,(k+1)η]

E
[∣∣vst32 (t)− vst22 (t)

∣∣2] ≤ Cst3
2 dη6. (82)

Now proceed similarly for increasing n with 3 ≤ n ≤ P − 4 and we get

sup
t∈(kη,(k+1)η]

E
[∣∣vst3n (t)− vst22 (t)

∣∣2] ≤ Cst3
n dη6, 3 ≤ n ≤ P − 4. (83)

Step 2: Verifying Part b) for Stage j = 3.

We use (83) in the case n = P − 4 and Lemma 2.24 to get

sup
t∈(kη,(k+1)η]

E
[∣∣vst3P−3(t)− vst2P−3(t)

∣∣2]
≤ γ2η2 sup

t∈(kη,(k+1)η]

(
E
[∣∣vst3P−4(t)− vst2P−4(t)

∣∣2]+ E
[∣∣vst2P−2(t)− vst1P−2(t)

∣∣2])
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≤ γ2η2
(
Cst3

P−4dη
6 + Cst2

P−2η
3
)
≤ Cst3

P−3dη
5. (84)

Step 3: Verifying Part c) for Stage j = 3.

Using (84) and Lemma 2.24, we can write

sup
t∈(kη,(k+1)η]

E
[∣∣vst3P−2(t)− vst2P−2(t)

∣∣2]
≤ γ2η2 sup

t∈(kη,(k+1)η]

(
E
[∣∣vst3P−3(t)− vst2P−3(t)

∣∣2]+ E
[∣∣∣vstjP−1(t)− vst1P−1(t)

∣∣∣2])
≤ γ2η2

(
Cst3

P−4dη
5 + Cst2

P−2η
8+2(P−1)−2P−1

)
≤ Cst3

P−2dη
7.

Now proceed similarly for increasing n, P − j ≤ n ≤ P − 2 and we get

sup
t∈(kη,(k+1)η]

E
[∣∣vst3P−2(t)− vst2P−2(t)

∣∣2] ≤ Cst3
n dη4+3+2(n−(P−2)) = Cst3

n dη11+2n−2P . (85)

Finally, the bound in (85) in the case n = P − 2 implies

sup
t∈(kη,(k+1)η]

E
[∣∣vst3P−1(t)− vst2P−1(t)

∣∣2]
≤ sup

t∈(kη,(k+1)η]

E

[∣∣∣∣−γ

∫ t

kη

e−γs
(
vst3P−2(s)− vst2P−2(s)

)
ds

∣∣∣∣2
]
≤ Cst3

P−1dη
9. (86)

Step 4: Verifying Part d) for Stage j = 3.

By (80), we have

sup
t∈(kη,(k+1)η]

E
[∣∣θst3(t)− θst2(t)

∣∣2] ≤ η2 sup
t∈(kη,(k+1)η]

E
[∣∣vst31 (t)− vst21 (t)

∣∣2] ≤ C
stj
P dη8.

Second half of the proof: the induction argument

The second half will also consist of four steps. As the induction hypothesis, we assume
Part a), b), c) and d) of the current Proposition are true up to Stage j.

Step 1: Verifying Part a) for Stage j + 1.

We have

v
stj+1

1 (t)− v
stj
1 (t)

=

∫ t

kη

(
−
(
gstj+1(s)− gstj(s)

)
+ γ
(
v
stj
2 (s)− v

stj−1

2 (s)
))

ds

=

∫ t

kη

(
−
(
gstj+1(s)−∇U

(
θstj(s)

))
−
(
∇U

(
θstj(t)

)
−∇U

(
θstj−1(s)

))
−
(
∇U

(
θstj−1(s)

)
− gstj(s)

)
ds+ γ

∫ t

kη

v
stj
2 (s)− v

stj−1

2 (s)

)
ds,
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so that by L-smoothness of U , we obtain:

sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

1 (t)− vstj(t)
∣∣∣2]

≤ η2 sup
t∈(kη,(k+1)η]

(
E
[∣∣gstj+1(t)−∇U

(
θstj(t)

)∣∣2]+ E
[∣∣∇U

(
θstj(t)

)
− gstj−1(t)

∣∣2]
+ L2E

[∣∣θstj(s)− θstj−1(t)
∣∣2]+ γ2E

[∣∣∣vstj2 (t)− v
stj−1

2 (t)
∣∣∣2]). (87)

The third and last terms on the right hand side in (87) are bounded respectively by Part
d) and Part a) of the induction hypothesis:

E
[∣∣θstj(s)− θstj−1(t)

∣∣2] ≤ C
stj
P dη2j+2 and E

[∣∣∣vstj2 (t)− v
stj−1

2 (t)
∣∣∣2] ≤ C

stj
2 dη2j.

Regarding the first two terms on the right hand side in (87), similar to the argument
at (59), Condition H2 indicates there is a positive constant c such that

sup
t∈(kη,(k+1)η]

(
E
[∣∣gstj+1(t)−∇U

(
θstj(t)

)∣∣2]+ E
[∣∣∇U

(
θstj(t)

)
− gstj−1(t)

∣∣2]) ≤ cdη2P−1.

Since for 1 ≤ j ≤ P − 1, we have 2j ≤ 2P − 1, the above calculations lead to

sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

1 (t)− vstj(t)
∣∣∣2] ≤ C

stj+1

1 dη2j+2. (88)

Next, we have v
stj+1

2 (t)−v
stj
2 (t) =

∫ t

kη

(
−γ
(
v
stj+1

1 (s)− v
stj
1 (s)

)
+ γ
(
v
stj
3 (s)− v

stj−1

3 (s)
))

ds,

so that

sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

2 (t)− v
stj
2 (t)

∣∣∣2]
≤ γ2η2 sup

t∈(kη,(k+1)η]

(
E
[∣∣∣vstj+1

1 (t)− v
stj
1 (t)

∣∣∣2]+ E
[∣∣∣vstj3 (t)− v

stj−1

3 (t)
∣∣∣2]).

The first term on the right hand side is bounded at (88), while the second term is bounded

per Part a) of the induction hypothesis as E
[∣∣∣vstj3 (t)− v

stj−1

3 (t)
∣∣∣2] ≤ C

stj
3 dη2j. Then

sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

2 (t)− v
stj
2 (t)

∣∣∣2] ≤ C
stj+1

2 dη2j+2. (89)

Now proceed similarly for increasing n with 3 ≤ n ≤ P − j − 2 and we get

sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

n (t)− v
stj
2 (t)

∣∣∣2] ≤ Cstj+1
n dη2j+2, 3 ≤ n ≤ P − j − 2. (90)

Via (88), (89) and (90), we confirm via induction that Part a) of this Proposition is true.

Step 2: Verifying Part b) for Stage j + 1.
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We use (90) in the case n = P − j − 2 and Part b) of the induction hypothesis to get

sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

P−j−1(t)− v
stj
P−j−1(t)

∣∣∣2]
≤ γ2η2 sup

t∈(kη,(k+1)η]

(
E
[∣∣∣vstj+1

P−j−2(t)− v
stj
P−j−2(t)

∣∣∣2]+ E
[∣∣∣vstjP−j(t)− v

stj−1

P−j (t)
∣∣∣2])

≤ γ2η2
(
C

stj+1

P−j−2dη
2j+2 + C

stj
P−jη

2j−1
)
≤ C

stj+1

P−j−1dη
2j+1. (91)

Thus, Part b) of this Proposition is true.

Step 3: Verifying Part c) for Stage j + 1.

Using (91) and Part c) of the induction hypothesis, we can write

sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

P−j (t)− v
stj
P−j(t)

∣∣∣2]
≤ γ2η2 sup

t∈(kη,(k+1)η]

(
E
[∣∣∣vstj+1

P−j−1(t)− v
stj
P−j−1(t)

∣∣∣2]+ E
[∣∣∣vstjP−j+1(t)− v

stj−1

P−j+1(t)
∣∣∣2])

≤ γ2η2
(
C

stj+1

P−j−2dη
2j+1 + C

stj
P−jη

4j+2(P−j+1)−2P−1
)
≤ C

stj+1

P−j dη
2j+3.

Now proceed similarly for increasing n, P − j ≤ n ≤ P − 2 and we get

sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

P−j (t)− v
stj
P−j(t)

∣∣∣2] ≤ Cstj+1
n dη2j+3+2(n−(P−j)) = Cstj+1

n dη4(j+1)+2n−2P−1.

(92)

Finally, the bound in (92) in the case n = P − 2 implies

sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

P−1 (t)− v
stj
P−1(t)

∣∣∣2]

≤ sup
t∈(kη,(k+1)η]

E

[∣∣∣∣−γ

∫ t

kη

e−γs
(
v
stj+1

P−2 (s)− v
stj
P−2(s)

)∣∣∣∣2
]
≤ C

stj+1

P−1 dη
4j+1. (93)

By (92) and (93), we conclude via induction that Part c) of this Proposition is true.

Step 4: Verifying Part d) for Stage j + 1.

By (88), we have

sup
t∈(kη,(k+1)η]

E
[∣∣θstj+1(t)− θstj(t)

∣∣2] ≤ η2 sup
t∈(kη,(k+1)η]

E
[∣∣∣vstj+1

1 (t)− v
stj
1 (t)

∣∣∣2] ≤ C
stj
P dη2j+4,

so that Part d) of this Proposition is true. This also completes our induction argument.

The estimate for Stage P − 1 of the Proposition is straightforward given the previous
results and the results in Lemma 2.24. This completes the proof. □

Proof of Theorem 2.19. □
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Appendix D. Choice of Polynomial Approximation

In this appendix, we expand on Remark 2.14 regarding the difficulty in applying La-
grange polynomial interpolation to our MCMC algorithm based on fourth-order Langevin
dynamics.

Recall from [MMW+21, Section 3.3] and also from [SBB+80], the Chebyshev nodes on the
interval [kη, (k + 1)η] are si = kη + η

2

(
1 + cos

(
2i−1
2α

π
))
, i = 1, 2, . . . , α. Then the (α− 1)-

degree Lagrange polynomial associated with a Rd-valued path t ∈ [kη, (k + 1)η] 7→ z(t) is
ϕz(t) :=

∑α
i=1 z(si)

∏
j ̸=i

t−si
sj−si

. The error estimate when z has up to α-th order derivatives

is ([SBB+80, Section 3.1])

sup
t∈[kη,(k+1)η]

|z(t)− ϕz(t)| ≤
ηα

2α−1α!
sup

t∈[kη,(k+1)η]

∣∣∣∣ dαdtα z(t)
∣∣∣∣ . (94)

Coming back to our MCMC algorithm based on fourth-order Langevin dynamics, we need
to approximate the path

p1(t) : t 7→ ∇U
(
θ(k) + (t− kη)v

(k)
1

)
, (95)

and also the path

p2(t) : s 7→ ∇U
(
θ̃(t)

)
, (96)

where

θ̃(t) = θ(k) + v
(k)
1 (t− kη)−

∫ t

kη

∫ s

kη

∇U
(
θ(k) + (r − kη)v

(k)
1

)
drds

+ γv
(k)
2

(t− kη)2

2!
+ γ2

(
v
(k)
3 − v

(k)
1

)(t− kη)3

3!
.

Lagrange polynomial interpolation of the path p1 in (95) has been done in [MMW+21]

by defining g1(t) :=
∑α

i=1∇U
(
θ(k) + (si − kη)v

(k)
1

)∏
j ̸=i

t−si
sj−si

. Note that g1(t) is a poly-

nomial of degree α − 1 in t, and the error supt∈[kη,(k+1)η] |p1(t)− g1(t)| is bounded in

[MMW+21, Section 4.3.2] using (94) as

sup
t∈[kη,(k+1)η]

|p1(t)− g1(t)| ≤
ηα

2α−1α!
sup

t∈[kη,(k+1)η]

∣∣∣∣ dαdtα∇U
(
θ(k) + (t− kη)v

(k)
1

)∣∣∣∣
≤ ηα

2α−1α!
sup

t∈[kη,(k+1)η]

∣∣∣∇αU
(
θ(k) + (t− kη)v

(k)
1

)
v
(k)
1

∣∣∣ .
We observe that this bound is simple since t 7→ θ(k) + (t− kη)v

(k)
1 is a linear function in t,

so that second and higher derivatives of t 7→ θ(k) + (t− kη)v
(k)
1 immediately vanish.

Meanwhile, we can approximate the path p2 by defining

g2(t) :=
α∑

i=1

∇U(T (si))
∏
j ̸=i

t− si
sj − si

,
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where

T (t) = θ(k) + v
(k)
1 (t− kη)−

∫ t

kη

∫ s

kη

g1(r)drds

+ γv
(k)
2

(t− kη)2

2!
+ γ2

(
v
(k)
3 − v

(k)
1

)(t− kη)3

3!
.

From (94), we get

sup
t∈[kη,(k+1)η]

|g2(t)−∇U(T (t))| ≤ ηα−1

2α−2(α− 1)!
sup

t∈[kη,(k+1)η]

∣∣∣∣ dα−1

dtα−1
∇U(T (t))

∣∣∣∣ .
In particular, the fact that g1(t) is a polynomial of degree α − 1 suggests T (t) is a
polynomial of degree α + 1. We use Faà Di Bruno’s formula to get

dα−1

dtα−1
∇U(T (t)) =

∑
Mα−1

(α− 1)!∏α−1
i=1 miimi

∇1+
∑α−1

i=1 miU(T (t))
α−1∏
i=1

(
di

dti
T (t)

)mi

, (97)

where Mα−1 := {(m1, . . . ,mα−1) : mi ≥ 0 and
∑α−1

i=1 imi = α − 1}. Since T (t) is not a
linear function and is a polynomial of potentially high degree, most terms in (97) does
not vanish, which makes the error bound quite challenging.

Appendix E. Extra Calculations for the Numerical Experiments

E.1. Quadratic loss function. In this section, we consider the case where the loss
function U(θ) is quadratic. Consider the mean-squared error in a regression problem
with Ridge regularization.If we have a training dataset Z = {z1, z2, · · · , zn}, with zi =
(Xi, yi), i = 1, 2, · · · , n. Here, Xi ∈ Rd is a d-dimensional input and yi ∈ R is the
one-dimensional output. Then the potential (loss) function is defined as

U(θ) =
1

2n

n∑
i=1

(
yi − θ⊤Xi

)2
+

λ

2
|θ|2 = 1

2n
|y −Xθ|2 + λ

2
|θ|2. (98)

The gradient of the loss is then given by

∇U(θ) = − 1

n
X⊤(y −Xθ) + λθ =

1

n
X⊤Xθ − 1

n
X⊤y + λθ =

(
1

n
X⊤X + λI

)
θ − 1

n
X⊤y.

(99)
Define A =

(
1
n
X⊤X + λI

)
and b = 1

n
X⊤y. Then ∇U(θ) = Aθ − b is linear in θ.

Third-order computation: Now we are ready to get an explicit form of the vector
∆U(θ, v1) used in equation (43) for the third-order dynamics

∆U(θ, v1) : =

∫ η

0

∇U(θ + tv1)dt =

∫ η

0

[A(θ + tv1)− b] dt = A

(
ηθ +

η2

2
v1

)
− bη.

Fourth-order computation: We use the following version of the formulas to compute
the mean vector components mis’ which are the expanded forms of the formulas presented
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in Lemma B.2. Note that, except for θ, v1, v2, and v3, all other variables used in the
computation processes are dummy variables.

m0 = −
∫ (k+1)η

kη

∫ s

kη

∇U

(
θ + (r − kη)v1 −

∫ r

kη

∫ w

kη

∇U(θ + (y − kη)v1)dydw

+ γv2
(r − kη)2

2!
+ γ2(−v1 + v3)

(r − kη)3

3!

)
drds

+ γ2

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∇U(θ + (y − kη)v1)dydwdrds

+ θµ00 + v1µ01 + v2µ02 + v3µ03.

Let us split the integral into small parts, we have

m0 = −
∫ (k+1)η

kη

∫ s

kη

∇U(θ + (r − kη)v1 − T1 + T2)drds+ T3 + T4,

where

T1 =

∫ r

kη

∫ w

kη

∇U(θ + (y − kη)v1)dydw,

T2 = γv2
(r − kη)2

2!
+ γ2(−v1 + v3)

(r − kη)3

3!
,

T3 = γ2

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∇U(θ + (y − kη)v1)dydwdrds,

T4 = θµ00 + v1µ01 + v2µ02 + v3µ03.

This implies

m0 = θ + µ01v1 + µ02v2 + µ03v3

+

(
η4γ2

24
− η2

2

)
(Aθ − b) +

η4

24
(A(Aθ − b))

+

(
η5γ2

60
− η3

6

)
Av1 +

η5

120
A(Av1)−

η4γ

24
Av2 −

η5γ2

120
Av3,

where we used µ00 = 1. Next,

m1 = −
∫ (k+1)η

kη

∇U

(
θ + v1(s− kη)−

∫ s

kη

∫ r

kη

∇U (θ + (w − kη)v1) dwdr + γv2
(s− kη)2

2!

+ γ2 (−v1 + v3)
(s− kη)3

3!

)
ds+ γ2

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∇U (θ + (w − kη)v1) dwdrds

+ θµ10 + v1µ11 + v2µ12 + v3µ13.

Split the integral into smaller parts, we have

m1 = −
∫ (k+1)η

kη

∇U (θ + (s− kη)v1 − T1 + T2) ds+ T3 + T4,
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where

T1 =

∫ s

kη

∫ r

kη

∇U (θ + (w − kη)v1) dwdr,

T2 = γv2
(s− kη)2

2!
+ γ2 (−v1 + v3)

(s− kη)3

3!
,

T3 = γ2

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∇U (θ + (w − kη)v1) dwdrds,

T4 = θµ10 + v1µ11 + v2µ12 + v3µ13,

which implies

m1 = µ11v1 + µ12v2 + µ13v3 +

(
η3γ2

6
− η

)
(Aθ − b) +

η3

6
A(Aθ − b)

+

(
η4γ2

12
− η2

2

)
Av1 +

η4

24
A(Av1)−

η3γ

6
Av2 −

η4γ2

24
Av3,

where we used µ10 = 0. Next, we compute m2 as follows:

m2 = γ

∫ (k+1)η

kη

∫ s

kη

∇U

(
θ + v1(r − kη)−

∫ r

kη

∫ w

kη

∇U
(
θ + (y − kη)v1

)
dydw

+ γv2
(r − kη)2

2!
+ γ2

(
− v1 + v3

)(r − kη)3

3!

)
drds

− γ3

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∇U
(
θ + (y − kη)v1

)
dydwdrds

− γ3

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(s−r)∇U
(
θ + (y − kη)v1

)
dydwdrds

+ θµ20 + v1µ21 + v2µ22 + v3µ23.

Split the integral into smaller parts. Define

T1 =

∫ r

kη

∫ w

kη

∇U
(
θ + (y − kη)v1

)
dydw

T2 = γv2
(r − kη)2

2!
+ γ2

(
− v1 + v3

)(r − kη)3

3!

T3 = −γ3

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∇U
(
θ + (y − kη)v1

)
dydwdrds

T4 = −γ3

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

e−γ(s−r)∇U
(
θ + (y − kη)v1

)
dydwdrds

T5 = θµ20 + v1µ21 + v2µ22 + v3µ23.

Then the integral becomes

m2 = γ

∫ (k+1)η

kη

∫ s

kη

∇U(θ + (r − kη)v1 − T1 + T2)drds+ T3 + T4 + T5
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= µ21v1 + µ22v2 + µ23v3 +
(1− e−ηγ

γ
− η4γ3

24
− η3γ2

6
+ η2γ − η

)
(Aθ − b)

− η4γ

24
(A(Aθ − b)) +

(
− η5γ3

60
− η4γ2

24
+

η3γ

3
− η2

2
+

η

γ
− 1− e−ηγ

γ2

)
(Av1)

− η5γ

120
(A(Av1)) +

η4γ3

24
(Av2) +

η5γ3

120
(Av3),

where we used µ20 = 0. Finally,

m3 = −γ2

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

e−γ((k+1)η−s)

· ∇U

(
θ + (w − kη)v1 −

∫ w

kη

∫ y

kη

∇U
(
θ + (z − kη)v1

)
dzdy + γv2

(w − kη)2

2!

+ γ2
(
− v1 + v3

)(w − kη)3

3!

)
dwdrds

+ γ4

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ((k+1)η−s)∇U
(
θ + (z − kη)v1

)
dzdydwdrds

+ γ4

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ((k+1)η−s)e−γ(r−w)∇U
(
θ + (z − kη)v1

)
dzdydwdrds

+ θµ30 + v1µ31 + v2µ32 + v3µ33.

Denote

T1 =

∫ w

kη

∫ y

kη

∇U
(
θ + (z − kη)v1

)
dzdy,

T2 = γv2
(w − kη)2

2!
+ γ2

(
− v1 + v3

)(w − kη)3

3!
,

T3 = γ4

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ((k+1)η−s)∇U
(
θ + (z − kη)v1

)
dzdydwdrds,

T4 = γ4

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

∫ w

kη

∫ y

kη

e−γ((k+1)η−s)e−γ(r−w)∇U
(
θ + (z − kη)v1

)
dzdydwdrds,

T5 = θµ30 + v1µ31 + v2µ32 + v3µ33.

Then the integral becomes

m3 = −γ2

∫ (k+1)η

kη

∫ s

kη

∫ r

kη

e−γ((k+1)η−s)∇U(θ + (w − kη)v1 − T1 + T2)dwdrds

+ T3 + T4 + T5.

Re-arranging, we have

m3 = µ31v1 + µ32v2 + µ33v3

+

(
η4γ3

24
− η2γ + η

(
3 + e−ηγ

)
− 4 (1− e−ηγ)

γ

)
(Aθ − b)
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+

(
η4γ

24
− η3

6
+

η2

2γ
− η

γ2
+

1− e−ηγ

γ3

)
A(Aθ − b)

+

(
η5γ3

60
− η4γ2

24
− η3γ

6
+ η2 − 4e−ηγ

γ2
− ηe−ηγ

γ
− 3η

γ
+

4

γ2

)
(Av1)

+

(
η5γ

120
− η4

24
+

η3

6γ
− η2

2γ2
+

e−ηγ

γ4
+

η

γ3
− 1

γ4

)
(A(Av1))

+

(
− 1

24
η4γ2 +

η3γ

6
− η2

2
+

e−ηγ

γ2
+

η

γ
− 1

γ2

)
(Av2)

+
(
− 1

120
η5γ3 +

η4γ2

24
− η3γ

6
+

η2

2
− e−ηγ

γ2
− η

γ
+

1

γ2

)
(Av3),

where we used µ30 = 0.

E.2. Logistic loss function. Similar to the quadratic case, let us assume that we have
an input data set X ∈ Rn×d, an output dataset y ∈ {0, 1}n, and θ ∈ Rd being the model
parameters or weights. Then the predicted probability for the i-th sample yi = 1 is

σ(zi) = P (yi = 1|Xi; θ) =
1

1 + e−zi
= ŷi; (100)

where zi = X⊤
i θ ∈ R and σ(z) is a real-valued function. However, if z = Xθ ∈ Rn then

we define the vector-valued sigmoid function as

σ⃗(z) :=
1

1 + e−z
:=

(
1

1 + e−z1
, . . . ,

1

1 + e−zn

)
. (101)

Therefore, for a two-class classification problem, we define

P(yi = 1|Xi; θ) = ŷi = σ(x⊤
i θ),

P(yi = 0|Xi; θ) = 1− ŷi = 1− σ(X⊤
i θ).

(102)

Then for a given yi, the probability of taking one of the classes, we combine the above
equations (102) into a single equation

P(yi|Xi; θ) = ŷi
yi(1− ŷi)

1−yi . (103)

For the independent and identically distributed (i.i.d.) data we define the loss

L(θ) =
n∏

i=1

P(yi|Xi; θ) =
n∏

i=1

ŷi
yi(1− ŷi)

1−yi ,

which implies

logL(θ) =
n∑

i=0

[yi log(ŷi) + (1− yi) log(1− ŷi)] .

We take the negative of log likelihood as the probabilities are often smaller numbers. Then
we define the potential function with a penalty term (i.e., L2 or Ridge regularization),

U(θ) = −
n∑

i=0

[yi log(ŷi) + (1− yi) log(1− ŷi)] +
λ

2
|θ|2
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= −
n∑

i=0

[yi log(σ(zi)) + (1− yi) log(1− σ(zi))] +
λ

2
|θ|2.

Therefore, the gradient of the regularized loss function in vector form would be

∇U(θ) = X⊤(ŷ − y) + λθ = X⊤(σ⃗(Xθ)− y) + λθ, (104)

where σ⃗ is defined in (101). The detailed derivation of ∇U(θ) in (104) will be given in
Lemma E.1.

The fourth-order sampling process requires the computation of the integral of the gradient∫ t

0
∇U(θ + tv1) for any t ∈ [0, η]; however, for a non-polynomial or black-box potential, it

is quite hard or sometimes impossible to compute the exact integrals. Thus, in this case,
we approximate the integrals using Taylor Series expansion.

For the Taylor expansion, let us define,

z(t) := X(θ + tv1) = Xθ + tXv1 ∈ Rn, s(t) := σ⃗(z(t)) ∈ Rn,

where σ⃗ is defined in (101). Furthermore, we define

ω(t) = ∇U(θ + tv1) = λ(θ + tv1) +X⊤ (σ⃗(X(θ + tv1))− y) = λ(θ + tv1) +X⊤(s(t)− y).

Now we expand ω(t) in the Taylor series for t = 0 up to a 3rd-degree polynomial to
approximate the integrals in the sampling process.

ω(t) = ω(0) + ω′(0)t+ ω′′(0)
t2

2
+ ω′′′(0)

t3

6
+O(t4). (105)

The next steps are the computation of the derivatives. First, the constant term in (105)
is given by

ω(0) = λθ +X⊤(σ⃗(Xθ)− y). (106)

We can compute that the first derivative is given by

ω′(t) = λv1 +X⊤
(
ds(t)

dt

)
.

Moreover,

ds(t)

dt
= σ⃗(z(t))⊙ (1− σ⃗(z(t)))⊙ (Xv1) = s(t)⊙ (1− s(t))⊙ (Xv1), (107)

which implies

ω′(t) = λv1 +X⊤
[
s(t)⊙ (1− s(t))⊙ (Xv1)

]
,

and in particular,

ω′(0) = λv1 +X⊤
[
s⊙ (1− s)⊙ (Xv1)

]
. (108)

We can compute that the second derivative is given by

ω′′(t) = X⊤ d

dt
[σ⃗(z(t))(1− σ⃗(z(t)))⊙ (Xv1)] . (109)
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Since s(t) = σ⃗(z(t)), we can compute that s′(t) = s(t)(1− s(t))(Xv1). Then we have

d

dt
[s(t)(1− s(t))] = s′(t)(1− s(t))− s(t)s′(t) = s(t)(1− s(t))(1− 2s(t))(Xv1). (110)

Plugging (110) into (109), we obtain,

ω′′(t) = X⊤
[
s(t)⊙ (1− s(t))⊙ (1− 2s(t))⊙ (Xv1)⊙ (Xv1)

]
,

which implies

ω′′(0) = X⊤
[
s⊙ (1− s)⊙ (1− 2s)⊙ (Xv1)⊙ (Xv1)

]
. (111)

We can compute the third derivative is given by

ω′′′(t) = X⊤ d

dt
[s(t)(1− s(t))(1− 2s(t))⊙ (Xv1)⊙ (Xv1)] .

Using the results in equation (107) and equation (110), we obtain:

d

dt
[s(t)(1− s(t))(1− 2s(t))]

=

(
s′(t)(1− s(t))(1− 2s(t)) + s(t)

d

dt

[
(1− s(t))(1− 2s(t))

])
(Xv1)

=
(
s(t)(1− s(t))

(
1− 6s(t) + 6[s(t)]2

))
(Xv1),

which implies

ω′′′(0) = X⊤
[
s⊙ (1− s)⊙ (1− 6s+ 6s2)⊙ (Xv1)⊙ (Xv1)⊙ (Xv1)

]
. (112)

Substituting (106), (108), (111) and (112) into (105), we get the Taylor expansion of the
gradient function,

ω(t) =λθ +X⊤(s− y)

+
[
λv1 +X⊤ (s⊙ (1− s)⊙ (Xv1))

]
t

+

[
X⊤
(
s⊙ (1− s)⊙ (1− 2s)⊙ (Xv1)⊙ (Xv1)

)]t2
2

+

[
X⊤
(
s⊙ (1− s)⊙ (1− 6s+ 6s2)⊙ (Xv1)⊙ (Xv1)⊙ (Xv1)

)]t3
6
+O(t4),

where s = σ(Xθ) ∈ Rn and ⊙ is the elementwise (Hadamard) product. We can rewrite
ω(t) as

ω(t) = ∇U(θ + tv1) = λθ +M0 + (M1 ⊙ (Xv1) + λv1)t+
1

2
(M2 ⊙Xv1 ⊙Xv1)t

2

+
1

6

(
M3 ⊙Xv1 ⊙Xv1 ⊙Xv1

)
t3,

where

M0 = X⊤(s− y), M1 = X⊤ (s⊙ (1− s)) ,

M2 = X⊤
(
s⊙ (1− s)⊙ (1− 2s)

)
, M3 = X⊤

(
s⊙ (1− s)⊙ (1− 6s+ 6s2)

)
,
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and all {Mi}3i=0 ∈ Rd and s = σ⃗(Xθ) ∈ Rn.

Fourth-order computations: Once we have the Taylor expanded form of ∇U(θ + tv1)
(i.e., ω(t)), the calculation processes are the same as the quadratic function. We use
standard mathematical software Mathematica 12.0 to compute those nested integrals and
obtain the following results.

m0 =

(
γ2η4λ

24
+

η4λ2

24
− η2λ

2
+ µ00

)
θ +

(
γ2η5λ

60
+

η5λ2

120
− η3λ

6
+ µ01

)
v1

+

(
µ02 −

γη4λ

24

)
v2 +

(
µ03 −

γ2η5λ

120

)
v3 +

(
γ2η4

24
+

η4λ

24
− η2

2

)
M0

+

(
γ2η5

120
+

η5λ

120
− η3

6

)
M1 ⊙Xv1 +

(
γ2η6

720
+

η6λ

720
− η4

24

)
M2 ⊙Xv1 ⊙Xv1

+

(
γ2η7

5040
+

η7λ

5040
− η5

120

)
M3 ⊙Xv1 ⊙Xv1 ⊙Xv1,

m1 =

(
γ2η3λ

6
+

η3λ2

6
− ηλ

)
θ +

(
γ2η4λ

12
+

η4λ2

24
− η2λ

2
+ µ11

)
v1

+

(
µ12 −

γη3λ

6

)
v2 +

(
µ13 −

γ2η4λ

24

)
v3 +

(
γ2η3

6
+

η3λ

6
− η

)
M0

+

(
γ2η4

24
+

η4λ

24
− η2

2

)
M1 ⊙Xv1 +

(
γ2η5

120
+

η5λ

120
− η3

6

)
M2 ⊙Xv1 ⊙Xv1

+

(
γ2η6

720
+

η6λ

720
− η4

24

)
M3 ⊙Xv1 ⊙Xv1 ⊙Xv1,

m2 =

(
−γη2λ

24

(
γ2η2 + η2λ− 12

)
+

λ (−γ3η3 + 3γ2η2 − 6γη − 6e−γη + 6)

6γ

)
θ

+

(
µ21 −

γη3λ (2γ2η2 + η2λ− 20)

120
+

λ (−γ4η4 + 4γ3η3 − 12γ2η2 + 24γη + 24e−γη − 24)

24γ2

)
v1

+

(
γ2η4λ

24
+ µ22

)
v2 +

(
γ3η5λ

120
+ µ23

)
v3

+

(
−γη2 (γ2η2 + η2λ− 12)

24
− γ3η3 − 3γ2η2 + 6γη + 6e−γη − 6

6γ

)
M0

+

(
γ4η4 − 4γ3η3 + 12γ2η2 − 24γη − 24e−γη + 24

24γ2
− γη3 (γ2η2 + η2λ− 20)

120

)
M1 ⊙Xv1

+

(
−γη4 (γ2η2 + η2λ− 30)

720
+

1− e−γη

γ3
− 1

120
γ2η5 − η

γ2
+

γη4

24
+

η2

2γ
− η3

6

)
M2 ⊙Xv1 ⊙Xv1

+

(
− γη5 (γ2η2 + η2λ− 42)

5040
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− γ6η6 − 6γ5η5 + 30γ4η4 − 120γ3η3 + 360γ2η2 − 720γη − 720e−γη + 720

720γ4

)
M3 ⊙Xv1 ⊙Xv1 ⊙Xv1,

m3 =

(
λe−γη

24γ3

(
γ6η4eγη + γ4η2eγη

(
η2λ− 24

)
− 4γ3η

(
eγη
(
η2λ− 18

)
− 6
)

+ 12γ2
(
eγη
(
η2λ− 8

)
+ 8
)
− 24γηλeγη + 24λ (eγη − 1)

))
θ

+

(
µ31 +

λe−γη

120γ4

(
2γ7η5eγη − 5γ6η4eγη + γ5η3eγη

(
η2λ− 20

)
− 5γ4η2eγη

(
η2λ− 24

)
+ 20γ3η

(
eγη
(
η2λ− 18

)
− 6
)
− 60γ2

(
eγη
(
η2λ− 8

)
+ 8
)
+ 120γηλeγη

− 120λ (eγη − 1)
))

v1

+

(
µ32 +

λ (−γ4η4 + 4γ3η3 − 12γ2η2 + 24γη + 24e−γη − 24)

24γ2

)
v2

+

(
µ33 +

λ (−γ5η5 + 5γ4η4 − 20γ3η3 + 60γ2η2 − 120γη − 120e−γη + 120)

120γ2

)
v3

+

(
γ3η4

24
+

λ− λe−γη

γ3
− ηλ

γ2
+

4e−γη + η2λ
2

− 4

γ
+ γ

(
η4λ

24
− η2

)
+ η

(
e−γη + 3

)
− η3λ

6

)
M0

+

(
λ (e−γη − 1)

γ4
+

γ3η5

120
+

ηλ

γ3
+

−5e−γη − η2λ
2

+ 5

γ2
+

η (−e−γη − 4) + η3λ
6

γ

+
1

120
γη3

(
η2λ− 40

)
− 1

24
η2
(
η2λ− 36

))
M1 ⊙Xv1

+

(
λ− λe−γη

γ5
− ηλ

γ4
+

γ3η6

720
+

6e−γη + η2λ
2

− 6

γ3
+

η (e−γη + 5)− η3λ
6

γ2

+
1

720
γη4

(
η2λ− 60

)
+

η4λ
24

− 2η2

γ
− 1

120
η3
(
η2λ− 60

))
M2 ⊙Xv1 ⊙Xv1

+

(
λ (e−γη − 1)

γ6
+

ηλ

γ5
+

−7e−γη − η2λ
2

+ 7

γ4
+

γ3η7

5040
+

η (−e−γη − 6) + η3λ
6

γ3
.+

60η2 − η4λ

24γ2

+
γη5 (η2λ− 84)

5040
+

η3 (η2λ− 80)

120γ
− 1

720
η4
(
η2λ− 90

))
M3 ⊙Xv1 ⊙Xv1 ⊙Xv1.
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Lemma E.1. Define the potential (loss) function with a penalty term (i.e., L2 or Ridge
regularization):

U(θ) = −
n∑

i=0

[yi log(ŷi) + (1− yi) log(1− ŷi)] +
λ

2
|θ|2

= −
n∑

i=0

[yi log(σ(zi)) + (1− yi) log(1− σ(zi))] +
λ

2
|θ|2.

Then the gradient of the regularized loss function is given as

∇U(θ) = X⊤(ŷ − y) + λθ = X⊤(σ⃗(Xθ)− y) + λθ.

Proof. To make the calculation easier, we consider the non-regularized elementwise gradient

of the loss. Additionally, we use the recursive property of the sigmoid function dσ(zi)
dθ

=

σ(zi)(1− σ(zi))Xi ∈ Rd. Thus,

∇U(θ) = −
n∑

i=1

[yi∇θ log(σ(zi)) + (1− yi)∇θ log(1− σ(zi))]

= −
n∑

i=1

[
yi

1

σ(zi)

d

dθ
σ(zi)− (1− yi) ·

1

σ(zi)

d

dθ
σ(zi)

]

= −
n∑

i=1

[
yi

1

σ(zi)
σ(zi)(1− σ(zi))Xi − (1− yi)

1

σ(zi)
σ(zi)(1− σ(zi))Xi

]

= −
n∑

i=1

[yi(1− σ(zi))Xi − (1− yi) · (1− σ(zi))Xi]

=
n∑

i=1

[−yi(1− σ(zi))Xi + (1− yi) · (1− σ(zi))Xi]

=
n∑

i=1

[(σ(zi)− yi)Xi]

= (σ(z1)− y1)X1 + (σ(z2)− y2)X2 + · · ·+ (σ(zn)− yn)Xn.

Therefore, the gradient of the regularized loss function in vector form would be

∇U(θ) = X⊤(ŷ − y) + λθ = X⊤(σ⃗(Xθ)− y) + λθ.

□
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