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Introduction

Recent decades have witnessed the era of big data, and there
has been an exponential growth in the amount of data
collected and stored with ever-increasing rates

Since the rate at which data is generated is often outpacing
our ability to analyze it in terms of computational resources at
hand, there has been a lot of recent interests for developing
scaleable machine learning algorithms which are efficient on
large datasets.
In the modern world, digital devices such as smart phones,
tablets, wearables, sensors or video cameras are major sources
of data generation.
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Introduction (cont.)

Often these devices are connected over a communication
network (such as a wireless network or a sensor network) that
has a high latency or a limited bandwidth.

Because of communication constraints and privacy constraints,
gathering all these data for centralized processing is often
impractical or infeasible.
Decentralized machine learning algorithms have received a lot
of attention for such applications where agents can
collaboratively learn a predictive model without sharing their
own data but sharing only their local models with their
immediate neighbors at some frequency to generate a global
model.
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Introduction (cont.)

In this presentation, we consider both distributed optimization
and decentralized sampling problems

In particular, for decentralized sampling algorithms, we propose
and study decentralized stochastic gradient Langevin dynamics
(DE-SGLD) and decentralized stochastic gradient Hamiltonian
Monte Carlo (DE-SGHMC)
For distributed optimization, we will consider distributed
stochastic gradient (D-SG) and distributed accelerated
stochastic gradient (D-ASG)
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Decentralized Bayesian Inference

Before introducing the DE-SGLD algorithm, we consider the
problem of decentralized Bayesian inference.

We have N agents connected over a network G = (V, E) where
V = {1, 2, 3, · · · , N} represents the agents and E ⊆ V × V is
the set of edges; i.e., i and j are connected if (i , j) ∈ E where
the network is undirected, i.e., (i , j) ∈ E then (j , i) ∈ E
Let A = [a1, a2, · · · , an] be a dataset consisting of n
independent and identically distributed (i.i.d) data vectors
sampled from a parameterized distribution p(A|x) where the
parameter x ∈ Rd has a common prior distribution p(x)
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Decentralized Bayesian Inference (cont.)

Due to the decentralization in the data collection, each agent i
possesses a subset Ai of the data where Ai = {ai

1, ai
2, · · · .ai

ni}
and ni is the number of samples of agent i

The data is held disjointly over agents, i.e., A = ∪iAi with
Ai ∩ Aj = ∅ for i ̸= j
The goal is to sample from the posterior distribution

p(x |A) ∝ p(A|x)p(x)

Since the data points are independent, the log-likelihood
function will be additive;

log p(A|x) =
N∑

i=1

ni∑
j=1

log p(ai
j |x)
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Decentralized Bayesian Inference (cont.)

Thus if we set

f (x) =
N∑

i=1
fi(x), fi(x) = −

ni∑
j=1

log p(ai
j |x) − 1

N log p(x) (1)

the aim is to sample from the posterior distribution with
density π(x) = p(x |A) ∝ e−f (x)

The functions fi(x) are called “component functions” where
fi(x) is associated to the local data of agent i and is only
accessible by the agent i .
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Decentralized Stochastic Gradient Langevin Dynamics
(SGLD)

Let x (k)
i denote the local variable of node i at iteration k

The decentralized SGLD (DE-SGLD) algorithm consists of a
weighted averaging with the local variables x (k)

j of node i ’s
immediate neighbors j ∈ Ωi := {j : (i , j) ∈ G as well as a
stochastic gradient step over the node’s component function
fi(x), i.e.,

x (k+1)
i =

∑
j∈Ωi

Wijx (k)
j − η∇̃fi(x (k)

i ) +
√

2ηw (k+1)
i (2)

η > 0 is the step size
Wij are the entries of a doubly stochastic wight matrix W with
Wij > 0 only if i is connected to j
For example, we can take W = I − δL where δ > 0 and L is
the graph Laplacian
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Decentralized SGLD (cont.)

w (k)
i are independent and identically distributed (i.i.d.)

Gaussian random variables with zero mean and identity
covariance matrix for every i and k.

∇̃fi(x (k)
i ) is an unbiased stochastic estimate of the

deterministic gradient ∇fi(x (k)
i ) with a bounded variance.

When the number of data points ni is large, stochastic
estimates ∇̃fi(x (k)

i ) are cheaper to compute compared to
actual gradients ∇fi(x (k)

i ) and can for instance be estimated
from a minibatch of data, i.e. from randomly selected smaller
subsets of data. This allows the DE-SGLD method to be
scaleable to big data settings when ni can be large.
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Decentralized SGLD (cont.)

Our objective is to sample from a target distribution with
density π(x) ∝ e−f (x) on Rd where

f (x) :=
N∑

i=1
fi(x) (3)

We assume for every i = 1, 2, · · · , N, fi is µ−strongly convex
and L−smooth, that is for every x , y ∈ Rd

L
2 ||x −y ||2 ≥ fi(x)− fi(y)−∇fi(y)T (x −y) ≥ µ

2 ||x −y ||2 (4)
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Decentralized SGLD (cont.)

Assumption 1
We assume that the gradient noise defined as

ξ
(k+1)
i := ∇̃fi

(
x (k)

i

)
− ∇fi

(
x (k)

i

)
(5)

is unbiased with a finite second moment, i.e.,

E
[
ξ

(k+1)
i

∣∣∣Fk
]

= 0, E
∥∥∥ξ(k+1)

i

∥∥∥2
≤ σ2 (6)

where Fk is the natural filtration of the iterates x (k)
i up to (and

including) time k.
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Decentralized SGLD (cont.)
Based on (5), we can rewrite the DE-SGLD iterations in (2) in
terms of the gradient noise ξ

(k+1)
i as

x (k+1)
i =

∑
j∈Ωi

Wijx (k)
j − η∇fi

(
x (k)

i

)
− ηξ

(k+1)
i +

√
2ηw (k+1)

i

By defining the column vector

x (k) :=
[(

x (k)
1

)T
,
(
x (k)

2

)T
, · · · ,

(
x (k)

N

)T
]T

∈ RNd

concetenates the local decision variables into a single vector,
we can express the DE-SGLD iterations further as

x (k+1) = Wxk − η∇F
(
x (k)

)
− ηξ(k+1) +

√
2ηw (k+1) (7)

with W = W ⊗ Id , and
F (x) := F (x1, x2, · · · , xN) =

∑N
i=1 fi(xi)
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Decentralized SGLD (cont.)

In equation (7),

w (k+1) :=
[(

w (k)
1

)T
,
(
w (k)

2

)T
, · · · ,

(
w (k)

N

)T
]T

are i.i.d. Gaussian noise with mean 0 and with a covariance
matrix given by the identity matrix.

In equation (7),

ξ(k+1) :=
[(

ξ
(k)
1

)T
,
(
ξ

(k)
2

)T
, · · · ,

(
ξ

(k)
N

)T
]T

are the gradient nose so that

E
[
ξ(k+1)

∣∣∣Fk
]

= 0, E∥ξ(k+1)∥2 ≤ σ2N (8)
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Decentralized SGLD (cont.)
Let us define the average at k-th iteration

x̄ (k) := 1
N

N∑
i=1

x (k)
i

Since W is doubly stochastic, we get

x̄ (k+1) = x̄ (k) −η
1
N

N∑
i=1

∇fi
(
x (k)

i

)
−ηξ̄(k+1) +

√
2ηw̄ (k+1) (9)

w̄ (k+1) := 1
N

N∑
i=1

w (k+1)
i ∼ 1√

N
N (0, Id), ξ̄(k+1) := 1

N

N∑
i=1

ξ
(k+1)
i

(10)
that satisfies

E
[
ξ̄(k+1)

∣∣∣Fk
]

= 0, E∥ξ̄(k+1)∥2 ≤ σ2

N (11)
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Decentralized SGLD (cont.)

We now state the main result of DE-SGLD, which bounds the
average of W2 distance between the distribution of x (k)

i and
the target distribution π (that has a density proportional to
exp(−f (x))) over 1 ≤ i ≤ N.

This result provides also a bound on the W2 distance of the
node averages x̄ (k) and the target distribution π
To facilitate the presentation, we define the second largest
magnitude of the eigenvalues of W as

γ̄ := max
{∣∣∣λW

2

∣∣∣, ∣∣∣λW
N

∣∣∣} (12)

which is related to the connectivity of the graph G
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Theorem 1
Assume E||x (0)||2 < ∞ and η ∈ (0, η̄) where
η̄ = min

(
1+λW

N
L , 1

L+µ

)
. Then, for every k, DE-SGLD iterates x (k)

i

given by (2) and their average x̄ (k) satisfy

W2
(
L
(
x̄ (k)

)
, π
)

≤ (1 − µη)k
(√

E∥x̄ (0) − x∗∥2 +
√

2µ−1dN−1
)

+

γ̄2
1 − ηµ

(
1 − ηL

2

)k
− γ̄2k

1 − ηµ
(
1 − ηL

2

)
− γ̄2


1/2

2L√
N

(
E||x (0)||2

)1/2
+ √

ηE1

where E1 := 1.65L
µ

√
dN−1 + σ√

µ(1 − ηL
2 )N

+
(

η

µ(1 − ηL
2 )

+
µ2(1 − ηL

2 )2

)1/2

·
(

4L2D2η

N(1 − γ̄2) + 4L2D2η

(1 − γ̄2) + 8L2d
(1 − γ̄2)

)1/2
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Theorem 1 (cont.)

Furthermore,

1
N

N∑
i=1

W2
(
L
(
x̄ (k)

)
, π
)

≤ (1 − µη)k
(√

E∥x̄ (0) − x∗∥2 +
√

2µ−1dN−1
)

+ 2γ̄k
√

N

(
E||x (0)||2

)1/2

+

γ̄2
1 − ηµ

(
1 − ηL

2

)k
− γ̄2k

1 − ηµ
(
1 − ηL

2

)
− γ̄2


1/2

2L√
N

(
E||x (0)||2

)1/2
+ √

ηE2 + ηE3

(13)

with E2 = E1 + 2
√

2d√
1−γ̄2

and E3 = 2D√
N(1−γ̄) + 2σ√

1−γ̄2
, where x∗ is the

minimizer of f , x̄ (0) = 1
N
∑N

i=1 x (0)
i , and D is defined in (16)

19 / 44



The Article Decentralized SGLD Decentralized SGHLMC Numerical Experiments Conclusion

Discussions

We observe that

lim
k→∞

sup W2
(
L
(
x̄ (k)

)
, π
)

= O(√η)

where O(.) hides other constants (d , µ, L, σ, N) and γ̄

With the iteration budget K , we can choose η = c log
√

K
µK for a

constant c > 1
Consequently,

W2(L(x̄ (2k)), π) = O

 1(√
K
)c +

√
c log K√

K

 = O
(√

log K√
K

)

where the last O(.) term hides constants that depends on
x (0), d , µ, L, σ, γ̄, N and c
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Outline of the Proof

To facilitate the analysis, let us define xk from the iterates:

xk+1 = xk − η
1
N ∇f (xk) +

√
2ηw̄ (k+1) (14)

where x0 = x̄0 = 1
N
∑N

i=1 x (0)
i

This is an Euler-Maruyama discretization (with stepsize η) of
the continuous-time overdamped Langevin diffusion:

dXt = − 1
N ∇f (Xt)dt +

√
2N−1dWt (15)

wher Wt is a standard d-dimensional Brownian motion
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Outline of the Proof (cont.)

To bound the average of W2 distance between L(x (k)
i ) and π

over 1 ≤ i ≤ N, main idea of our proof technique is to bound
the following three terms:

1 The L2 distance between x̄ (k) and their average (mean)

x̄ (k) =
∑N

i=1
N

for 1 ≤ i ≤ N
2 The L2 distance between the average iterate x̄ (k) and iterates

xk obtained from Euler-Maruyama discretization of overdamped
Langevin SDE; and

3 The W2 distance between L(xk) and π, i.e., the convergence of
Euler-Maruyama discretization of the overdamped Langevin
SDE.
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Uniform L2 bounds between x (k)
i and their average

Let x∗ ∈ Rd denote the unique minimizer of f (x), and
x∗ = [xT

∗ , xT
∗ , xT

∗ , · · · , xT
∗ ]T is an Nd-dimensional vector.

Lemma 2
Under the assumptions of Theorem 1, we have, E∥∇F (x (k))∥2 ≤ D2 for
an k, where

D2 = 4L2E∥x (0) −x∗∥2 +8L2 C2
1 η2N

(1 − γ̄)2 + 2L2(ησ2N + 2dN)
µ(1 + λW

N − ηL)
+4∥∇F (x∗)∥2

(16)
where

C1 = C̄1

(
1 + 2(L + µ)

µ

)
, and C̄1 =

√√√√2L
N∑

i=1
(fi(0) − f ∗

i ), f ∗
i = min

x∈Rd
fi(x)

(17)
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Outline of the Proof (cont.)

It is clear from the DE-SGLD iterations that the deviations
between the iterates x (k)

i and their means x̄ (k) depend on the
magnitude of the gradients ∇F (x (k)), the stepsize as well as
the magnitude of the injected Gaussian noise.

Building on Lemma 2 which gives us a control over the second
moment of the gradients, we provide uniform L2 bounds
between the iterates x (k)

i and their means.

Lemma 3
Under the assumptions of Theorem 1, for any k, we have

N∑
i=1

E∥x (k)
i −x̄ (k)∥2 ≤ 4γ̄2kE∥x (0)∥2+ 4D2η2

(1 − γ̄)2 + 4σ2Nη2

(1 − γ̄2)+ 8dNη

(1 − γ̄2)

where D is defined in (16) and γ̄ is given in (12)
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Outline of the Proof (cont.)

Note that we can deduce from (9) that

x̄ (k+1) = x̄ (k) −η
1
N ∇f (x̄ (k))+ηEk+1 −ηξ̄(k+1) +

√
2ηw̄ (k+1) (18)

where

Ek+1 = 1
N

N∑
i=1

[
∇fi(x̄ (k)) − ∇fi(x (k)

i )
]

(19)

Lemma 4
Under the assumptions of Theorem 1, for any k, we have

E∥Ek+1∥2 ≤ 4γ̄2k

N E∥x (0)∥2 + 4L2D2η2

N(1 − γ̄)2 + 4L2σ2η2

(1 − γ̄2) + 8dη

(1 − γ̄2)

where Ek+1 is defined in (19)

25 / 44



The Article Decentralized SGLD Decentralized SGHLMC Numerical Experiments Conclusion

Outline of the Proof (cont.)

Note that we can deduce from (9) that

x̄ (k+1) = x̄ (k) −η
1
N ∇f (x̄ (k))+ηEk+1 −ηξ̄(k+1) +

√
2ηw̄ (k+1) (18)

where

Ek+1 = 1
N

N∑
i=1

[
∇fi(x̄ (k)) − ∇fi(x (k)

i )
]

(19)

Lemma 4
Under the assumptions of Theorem 1, for any k, we have

E∥Ek+1∥2 ≤ 4γ̄2k

N E∥x (0)∥2 + 4L2D2η2

N(1 − γ̄)2 + 4L2σ2η2

(1 − γ̄2) + 8dη

(1 − γ̄2)

where Ek+1 is defined in (19)

25 / 44



The Article Decentralized SGLD Decentralized SGHLMC Numerical Experiments Conclusion

L2 distance between the mean and the discretized
overdamped SDE

Lemma 5
Under the assumptions of Theorem 1, for every k,

E∥x̄ (k) − xk∥2

≤ η

(
η

µ(1 − ηL
2 )

+ (1 + ηL)2

µ2(1 − ηL
2 )2

)(
4L2D2η

N(1 − γ̄)2 + 4L2σ2η

(1 − γ̄2) + + 8L2d
(1 − γ̄2)

)

+ ησ2

µ(1 − ηL
2 )N

+
γ̄2k −

(
1 − ηµ(1 − ηL

2 )
)k

γ̄2 − 1 + ηµ(1 − ηL
2 )

· 4L2γ̄2

N E∥x (0)∥2
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W2 Distance between the iterates and the Gibbs distribution

Bounds on the W2 distance between the Euler-Maruyama
discretization xk of the overdamped Langevin diffiusion and Gibbs
distribution π has been established in the literature1

Lemma 6

For any η ∈
(
0, 2N

L+µ

]
, we have

W2(L(xk), π) ≤ (1 − µn)kW2(L(x0), π) + 1.65L
µ

√
ηdN−1

1Dalalyan, A.S. and Karagulyan, A.G. (2019). User-friendly guarantees for
the Langevin Monte Carlo with inaccurate gradient. Stochastic Processes and
their Applications. 129(12), 5278-5311
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Decentralized SGHLMC

We introduce the following algorithm which we call
decentralized stochastic gradient Hamiltonian Monte Carlo
(DE-SGHMC): For each agent i = 1, 2, · · · , N,

v (k+1)
i = v (k)

i − η
[
γv (k)

i + ∇̃fi
(
x (k)

i

)]
+
√

2γηw (k+1)
i (20)

x (k+1)
i =

∑
j∈Ωi

Wijx (k)
j + ηv (k+1)

i (21)

where w (k+1)
i is the Gaussian noise and ∇̃fi is the noisy

gradient introduced just as before for DE-SGLD.
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Decentralized SGHLMC (cont.)

Let us define the average at k-th iteration as:

x̄ (k) = 1
N

N∑
i=1

x (k)
i , v̄ (k) = 1

N

N∑
i=1

v (k)
i (22)

Since W is doubly stochastic, we get

v̄ (k+1) = v̄k−ηγv̄ (k)−η
1
N

N∑
i=1

∇fi
(
x (k)

i

)
−ηξ̄(k+1)+

√
2γηw̄ (k+1)

x̄ (k+1) = x̄ (k) + ηv̄ (k+1)

And, ξ̄(k+1) = 1
N
∑N

i=1 ξ
(k+1)
i ,

w̄ (k+1) = 1
N
∑N

i=1 w (k+1)
i
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Decentralized SGHLMC (cont.)
Theorem 7
Assume E∥x (0)∥2 and E∥v (0)∥2 are finite. Let η be given satisfying

η2 ∈
(

0,
1 + λW

N
2(L + µ)

)
(23)

Then, we can choose γ ∈ (0, 1
η ] such that β = 1 − γη ∈ [0, 1) and

satisfies. the inequality

β ≤ β̄ = min

1 + λW
N − 4η2µ

4 , η3

√
c1µ3 (1 + λW

N )
64

 (24)

where
c1 = 1

2
η2µ

(1 + β) + (1 − β)
(

η2µ
1−λW

N +η2L

)
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Decentralized SGHLMC (cont.)

Theorem 7 (cont.)

For every k, DE-SGHMC iterates x (k)
i given by (21) and their

average x̄ (k) satisfy

W2
(
L
(
x̄ (k)

)
, π
)

≤ (1 − µη2)k
((

E∥x̄ (0) − x∗∥2
)1/2

+
√

2µ−1dN−1
)

+

γ̄2

(
1 − η2µ

(
1 − η2L

2

))k
− γ̄2k(

1 − η2µ
(
1 − η2L

2

))
− γ̄2


1/2

2L√
N

(
E∥x (0)∥2

)1/2
+ ηE4

(25)

with E4 = O(1)
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Decentralized SGHLMC (cont.)
Theorem 7 (cont.)
Furthermore,

1
N

N∑
1

W2
(
L
(
x (k)

)
, π
)

≤ (1 − µη2)k
((

E∥x̄ (0) − x∗∥2
)1/2

+
√

2µ−1dN−1
)

+
√

2γ̄k
√

N

(
E∥x (0)∥2

)1/2

+


(
1 − η2µ

(
1 − η2L

2

))k
− γ̄2k(

1 − η2µ
(
1 − η2L

2

))
− γ̄2


1/2

2Lγ̄√
N

(
E∥x (0)∥2

)1/2
+ ηE5

(26)

with E5 = O(1), and β = O(η4) where O(.) hides the constants
that depend on d , µ, L, σ, and γ̄ and N
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Discussions

We observe that

lim
k→∞

sup W2
(
L
(
x̄ (k)

)
, π
)

= O(n)

where O(.) hides other constants (d , µ, L, σ, N, and γ̄)

With the iteration K , we can choose η =
√

c log
√

K
µK for a

constant c > 1
Consequently,

W2
(
L
(
x̄ (2k)

)
, π
)

= O

√√
log K√

K


where the last O(·) term hides constants that depends on
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Numerical Experiments

We present our numerical results to validate our theory and
investigate the performance of DE-SGLD and DE-SGHMC

We mainly focus on Bayesian linear regression and Bayesian
logistic regression
We consider mainly three network architectures

Fully-connected
Circular
A disconnected
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Network Architecture
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Experiment Design
Data

δj ∼ N (0, ξ2), Xj ∼ N (0, I), yj = xT Xj + δj

where δj are i.i.d scalars with ξ = 1, x ∈ R2 and the prior
distribution of x ∼ N (0, λI) with λ = 10

For Bayesian Linear regression we have the posterior
distribution

π(x) ∼ N (m, V ), m = (Σ−1 + XT X/ξ2)−1(XT y/ξ2)

,
V = (XT X/ξ2 + Σ−1)−1

where Σ = λI is the covariance matrix of the prior distribution
of x , X = [XT

1 , XT
2 , XT

3 , · · · ]T and Y = [y1, y2, · · · ]T are the
matrices containing all the data points.
We simulate 5000 data points and partition them randomly
among N = 100 agents.
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Experiment Design (cont.)

Each agent has access to its own data but not to other agents’
data.

The posterior distribution π(x) ∝ e−f (x) is of the form
f (x) =

∑N
i=1 fi(x) with

fi(x) = −
ni∑

j=1
log p(y i

j |x , X i
j ) − 1

N log p(x)

=
ni∑

j=1
(y i

j − xT X i
j ) + 1

2λN ∥x∥2

where,

p(y i
j |x , X i

j ) = 1√
2πξ2 e− 1

2ξ2 (y i
j −xT X i

j )2
, p(x) ∝ e− 1

2λ ∥x∥2
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Results (DE-SGLD Method)
Tune the step size η = 0.009 and consider the deterministic
gradient (i.e., σ = 0)

It follows that x (k)
i ∼ N (mk

i , Σ(k)
i ) for some mean vector mk

i
and covariance matrix Σ(k)

i
Based on 100 runs we estimate mk

i and Σ(k)
i and compute W2

distance w.r.t π(x) ∼ N (m, V )
We also com-
pute the average x̄ (k)

i over the iterations and obtain the following

graph
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Results (DE-SGHMC)

We investigate the DE-SGHMC method on the same data set
with the same three network structure

The stepsize and the friction coefficient are tuned to η = 0.1
and γ = 7, respectively. And we obtain the following graph
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Results

we investigate the effect of changing stepsize, batch size and
the network structure on the speed of convergence where we
stick to the DESGLD method for this set of experiments

We measure the 2-Wasserstein distance to the target π with a
similar approach as before by fitting a Gaussian distribution
N (m(k)

i , Σ(k)
i ) to the empirical distribution of x (k)

i over 100
independent runs.
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Results

Both Figure 4(a) and Figure 4(b) are based on the
fully-connected network architecture. In Figure 4(a), we fixx
the stepsize to η = 0.009 and vary the batch sizes (the number
of data points sampled with replacement to estimate the
gradient)

We conclude that different batch sizes affect the asymptotic
error the iterates have with respect to the 2-Wasserstein
distance.
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Results

In Figure 4(b), we used stochastic gradients with batch size
b = 25 while we varied the stepsize
The result clearly demonstrates the trade-off between the
convergence rate and the asymptotic accuracy; for larger
stepsize the algorithm converges faster to an asymptotic error
region but the accuracy becomes worse as predicted by
Theorem 1
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Results

In Figure 4(c) we report the effect of network structure with a
constant stepsize η = 0.008 and batch size b = 25 where we
report the performance of a randomly picked agent.
The fastest convergence is observed for the fully-connected
network.
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Conclusion

We studied DE-SGLD and DE-SGHMC methods which allow
scalable Bayesian inference for decentralized learning settings

For both methods, we show that the distribution of the iterate
x (k) of node i converges linearly (in k) to a neighborhood of
the target distribution in the 2-Wasserstein metric when the
target density π(x) ∝ e−f (x) is strongly log-concave (i.e. f is
strongly convex) and f is smooth
Our results are non-asymptotic and provide performance
bounds for any finite k.
We also illustrated the efficiency of our methods on the
Bayesian linear regression and Bayesian logistic regression
problems
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