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Introduction

@ Recent decades have witnessed the era of big data, and there
has been an exponential growth in the amount of data
collected and stored with ever-increasing rates

@ Since the rate at which data is generated is often outpacing
our ability to analyze it in terms of computational resources at
hand, there has been a lot of recent interests for developing
scaleable machine learning algorithms which are efficient on
large datasets.

@ In the modern world, digital devices such as smart phones,
tablets, wearables, sensors or video cameras are major sources
of data generation.
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Introduction (cont.)

@ Often these devices are connected over a communication
network (such as a wireless network or a sensor network) that
has a high latency or a limited bandwidth.
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Introduction (cont.)

@ Often these devices are connected over a communication
network (such as a wireless network or a sensor network) that
has a high latency or a limited bandwidth.

@ Because of communication constraints and privacy constraints,
gathering all these data for processing is often
impractical or infeasible.

@ Decentralized machine learning algorithms have received a lot
of attention for such applications where agents can
collaboratively learn a predictive model without sharing their
own data but sharing only their local models with their
immediate neighbors at some frequency to generate a global
model.
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Introduction (cont.)

@ In this presentation, we consider both distributed optimization
and decentralized sampling problems
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Introduction (cont.)
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@ In particular, for decentralized sampling algorithms, we propose
and study decentralized stochastic gradient Langevin dynamics
(DE-SGLD) and decentralized stochastic gradient Hamiltonian
Monte Carlo (DE-SGHMC)
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Introduction (cont.)

@ In this presentation, we consider both distributed optimization
and decentralized sampling problems

@ In particular, for decentralized sampling algorithms, we propose
and study decentralized stochastic gradient Langevin dynamics
(DE-SGLD) and decentralized stochastic gradient Hamiltonian
Monte Carlo (DE-SGHMC)

@ For distributed optimization, we will consider distributed
stochastic gradient (D-SG) and distributed accelerated
stochastic gradient (D-ASG)
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Decentralized Bayesian Inference

@ Before introducing the DE-SGLD algorithm, we consider the
problem of decentralized Bayesian inference.
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Decentralized Bayesian Inference

@ Before introducing the DE-SGLD algorithm, we consider the
problem of decentralized Bayesian inference.

@ We have N agents connected over a network G = (V, ) where
V =1{1,2,3,---, N} represents the agents and £ CV x V is
the set of edges; i.e., i and j are connected if (i,) € £ where
the network is undirected, i.e., (i,j) € € then (j,i) € £

o Let A= a1, a2, ,an| be a dataset consisting of n
independent and identically distributed (i.i.d) data vectors
sampled from a parameterized distribution p(A|x) where the
parameter x € R? has a common prior distribution p(x)
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Decentralized Bayesian Inference (cont.)

@ Due to the decentralization in the data collection, each agent i
possesses a subset A; of the data where A; = {a}, a5, - .a);}
and n; is the number of samples of agent i
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Decentralized Bayesian Inference (cont.)

@ Due to the decentralization in the data collection, each agent i
possesses a subset A; of the data where A; = {a,a}, - .2/}
and n; is the number of samples of agent i

@ The data is held disjointly over agents, i.e., A = U;A; with
AiNA; =0 fori#j

@ The goal is to sample from the posterior distribution

p(x|A) o< p(Alx)p(x)
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Decentralized Bayesian Inference (cont.)

@ Due to the decentralization in the data collection, each agent i
possesses a subset A; of the data where A; = {a,a}, - .2/}
and n; is the number of samples of agent i

@ The data is held disjointly over agents, i.e., A = U;A; with
AiNA; =0 fori#j

@ The goal is to sample from the posterior distribution

p(x|A) o< p(Alx)p(x)

@ Since the data points are independent, the log-likelihood
function will be additive;

log p(Alx) = ZZIogp

i=1j=1
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Decentralized Bayesian Inference (cont.)

@ Thus if we set
N n; ) 1
f(x)=>_ fi(x), fi(x)=—">_logp(aj|x)— 7 legp(x) (1)
i—1 j=1

the aim is to sample from the posterior distribution with
density 7(x) = p(x|A) o e~ F¥)
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Decentralized Bayesian Inference (cont.)

@ Thus if we set
N n; ) 1
f(x)=>_ fi(x), fi(x)=—">_logp(aj|x)— 7 legp(x) (1)
i—1 j=1

the aim is to sample from the posterior distribution with
density 7(x) = p(x|A) o e~ F¥)
@ The functions f;(x) are called “component functions” where

fi(x) is associated to the local data of agent i and is only
accessible by the agent i.
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(SGLD)

o Let x,.(k) denote the local variable of node i at iteration k
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Decentralized Stochastic Gradient Langevin Dynamics

(SGLD)

o Let x,.(k) denote the local variable of node i at iteration k

@ The decentralized SGLD (DE-SGLD) algorithm consists of a
weighted averaging with the local variables xj(k) of node i's
immediate neighbors j € Q; := {j : (i,j) € G as well as a
stochastic gradient step over the node's component function

fi(x), i.e.,

(D) ) VVinj(k) C SR+ 2w ()
JEQ;
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Decentralized Stochastic Gradient Langevin Dynamics

(SGLD)

o Let x(k) denote the local variable of node i at iteration k

1
@ The decentralized SGLD (DE-SGLD) algorithm consists of a
weighted averaging with the local variables xj(k) of node i's
immediate neighbors j € Q; := {j : (i,j) € G as well as a
stochastic gradient step over the node's component function

fi(x), i.e.,

D = 37 Wi ) + Ve ()
JEQ;

@ 7 > 0 is the step size
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Decentralized Stochastic Gradient Langevin Dynamics

(SGLD)

(

o Let x; %) denote the local variable of node i at iteration k

@ The decentralized SGLD (DE-SGLD) algorithm consists of a
weighted averaging with the local variables xj(k) of node i's
immediate neighbors j € Q; := {j : (i,j) € G as well as a
stochastic gradient step over the node's component function
fi(x), i.e.,

(D) ) VVinj(k) C SR+ 2w ()
JEQ;

@ 7 > 0 is the step size
@ W are the entries of a doubly stochastic wight matrix W with
Wi; > 0 only if i is connected to j
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Decentralized Stochastic Gradient Langevin Dynamics

(SGLD)

o Let x,.(k) denote the local variable of node i at iteration k

@ The decentralized SGLD (DE-SGLD) algorithm consists of a
weighted averaging with the local variables xj(k) of node i's
immediate neighbors j € Q; := {j : (i,j) € G as well as a
stochastic gradient step over the node's component function
fi(x), i.e.,

(D) ) VVinj(k) C SR+ 2w ()
JEQ;

@ 7 > 0 is the step size

@ W are the entries of a doubly stochastic wight matrix W with
Wi; > 0 only if i is connected to j

@ For example, we can take W =/ — §L where § > 0 and L is
the graph Laplacian
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Decentralized SGLD (cont.)

° w,-(k) are independent and identically distributed (i.i.d.)

Gaussian random variables with zero mean and identity
covariance matrix for every i and k.
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Decentralized SGLD (cont.)

° w,-(k) are independent and identically distributed (i.i.d.)
Gaussian random variables with zero mean and identity
covariance matrix for every i and k.

° @f,-(x,-(k)) is an unbiased stochastic estimate of the

deterministic gradient Vf,-(x(k)) with a bounded variance.

i
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Decentralized SGLD (cont.)

° w,-(k) are independent and identically distributed (i.i.d.)
Gaussian random variables with zero mean and identity
covariance matrix for every i and k.

° @f,-(x,-(k)) is an unbiased stochastic estimate of the

deterministic gradient Vf,-(x,-(k)) with a bounded variance.
@ When the number of data points n; is large, stochastic

estimates @f,-(x,-(k)) are cheaper to compute compared to
actual gradients Vf,-(x,-(k)) and can for instance be estimated
from a minibatch of data, i.e. from randomly selected smaller
subsets of data. This allows the DE-SGLD method to be

scaleable to big data settings when n; can be large.
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Decentralized SGLD (cont.)

@ Our objective is to sample from a target distribution with

density 7(x) o< e f¥) on R? where
N
f(x) =) _fi(x) (3)
i=1
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Decentralized SGLD (cont.)

@ Our objective is to sample from a target distribution with

density 7(x) o< e f¥) on R? where
N
f(x) =) _fi(x) (3)
i=1
@ We assume for every i =1,2,--- , N, f; is yu—strongly convex

and L—smooth, that is for every x,y € RY

Sy = 660~ )~ Vi) (=) = By |2 (8)
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Decentralized SGLD (cont.)

We assume that the gradient noise defined as
44 = 98 (x9) - v () 5)
is unbiased with a finite second moment, i.e.,

E[d5] -0 E|*f< @

where F is the natural filtration of the iterates x,-(k) up to (and

including) time k.
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Decentralized SGLD (cont.)

@ Based on (5), we can rewrite the DE-SGLD iterations in (2) in

terms of the gradient noise 5,(k+1) as

(D) ) M/I,J,)(Jgk) _nVF, (X,-(k)) el |/ D)
JEQ;
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Decentralized SGLD (cont.)

@ Based on (5), we can rewrite the DE-SGLD iterations in (2) in

terms of the gradient noise 5,(k+1) as

(D) ) ij){}k) _nVF, (X,-(k)) el |/ D)
JEQ;

@ By defining the column vector

9= [(49)T () ()] e

concetenates the local decision variables into a single vector,
we can express the DE-SGLD iterations further as

(K1) sk — nVF (X(k)) _ Uf(kH) + \/%W(k—&-l) (7)

with W = W @ Iy, and
F(x) := F(xt, %2, xn) = SN £i(x)
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Decentralized SGLD (cont.)

e In equation (7),

(k) [(Wl(k)y | (Wz(k))T o ,(WI(Vk)) T] T

are i.i.d. Gaussian noise with mean 0 and with a covariance
matrix given by the identity matrix.
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Decentralized SGLD (cont.)

e In equation (7),

(k) [(Wl(k)y | (Wz(k))T o ,(WI(Vk)) T] T

are i.i.d. Gaussian noise with mean 0 and with a covariance
matrix given by the identity matrix.
@ In equation (7),

glietl) . [(ék))T,( gk))T"” 7( I(\;<))T T
are the gradient nose so that
E [g(k-i-l)‘]:k} =0, E‘|£(k+1)H2 < U2N (8)
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Decentralized SGLD (cont.)

@ Let us define the average at k-th iteration

1 ZN (k)
=(k) .
X( ) o N i=1 Xi
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Decentralized SGLD (cont.)

@ Let us define the average at k-th iteration
1§~ ()
) — N in
i=1
@ Since W is doubly stochastic, we get

gt — 50y = va< )_ng(k+1)+\/g,,—v(k+1) (9)
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Decentralized SGLD (cont.)

@ Let us define the average at k-th iteration
1§~ ()
(k) .— 5 in
i=1
@ Since W is doubly stochastic, we get

gt — 50y = va< )_ng(k+1)+\/g,,—v(k+1) (9)

1Y 1
— (k+1) . + (k+1) = N(0.] k+1) (k+1)
w = W; ~ > Id f
’V; e Nz(lo)
that satisfies
2
- o
E[{*D|A] =0, EIEIP < T (11)
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Decentralized SGLD (cont.)

@ We now state the main result of DE-SGLD, which bounds the
average of W, distance between the distribution of x,.(k) and
the target distribution 7 (that has a density proportional to
exp(—f(x))) over 1 < i < N.
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Decentralized SGLD (cont.)

@ We now state the main result of DE-SGLD, which bounds the
average of W, distance between the distribution of x,.(k) and
the target distribution 7 (that has a density proportional to
exp(—f(x))) over 1 < i < N.

@ This result provides also a bound on the W, distance of the
node averages x(¥) and the target distribution 7

17 /44



Decentralized SGLD
0O000000e0000000000

Decentralized SGLD (cont.)

@ We now state the main result of DE-SGLD, which bounds the
average of W, distance between the distribution of x,.(k) and
the target distribution 7 (that has a density proportional to
exp(—f(x))) over 1 < i < N.

@ This result provides also a bound on the W, distance of the
node averages x(¥) and the target distribution 7

o To facilitate the presentation, we define the second largest
magnitude of the eigenvalues of W as

)

7 1= max {’)\g‘/

AW} (12)

which is related to the connectivity of the graph G
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Theorem 1

Assume E||x()]]2

w
77 = min (HL)"V 1>. Then, for every k, DE-SGLD iterates x,-(k)

< oo and 71 € (0,7) where

9 L+,u
given by (2) and their average x(¥) satisfy

Ws (£ (319) ,7)
< (1 pn)* <\/EH>‘<(0) — x|+ \/QM—ldN_1>
1/2
_ l—nu( ﬂL)k_,—y2k . o
1o (1) — 72 N (BIX2) " + ik

1.65L
where £} = —— 05 dN-1 + %
a p(l = 5)N

N n__, Y2 a12p2, L 4D | 8L
p(l—"15)  p2(1—1E)2 N1-32)  (1-5) (1 %%)

_'_
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Theorem 1 (cont.)

Furthermore,

LS (£ (x) . 7)

i=1

_ 275 1/2
< (- ) (VBIFO i + 2t 1) + 2T (BIO)

k B 1/2
Ll (1-%) -5 o2
+ - (M 7)™ + i+ nEs
1 —npu (1 - f) -7
(13)
with By = £y + 2Y2d_ and 5= 2D | 20 \yhere x, is the

V172 VNA-7) T 132
minimizer of £,%(®) = LN, x,-(o), and D is defined in (16)
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Discussions

@ We observe that
fim 0 (2 (29) ) =00,

where O(.) hides other constants (d, u, L, o, N) and ¥
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@ We observe that
fim 0 (2 (29) ) =00,

where O(.) hides other constants (d, u, L, o, N) and ¥
o With the iteration budget K, we can choose 1) = ClougiK‘/R for a

constant ¢ > 1
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Discussions

@ We observe that
fim 0 (2 (29) ) =00,

where O(.) hides other constants (d, u, L, o, N) and ¥

e With the iteration budget K, we can choose n = ClougiK‘/R for a
constant ¢ > 1
e Consequently,

Wa(L(Z2K), 1) = O (( 1 W) o (W)

VR VK VK

VK
where the last O(.) term hides constants that depends on
x© d, p, L,o,7 N and ¢
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Outline of the Proof

@ To facilitate the analysis, let us define xk from the iterates:

1 _
Xk41 = Xk — UNVf(Xk) + /2pw k) (14)

_ 0
where xp = Xg = % Z,N:l X0
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Outline of the Proof

@ To facilitate the analysis, let us define xk from the iterates:

1 _
Xk41 = Xk — UNVf(Xk) + /2pw k) (14)

_ 0
where xp = Xg = % Z,N:l X0

@ This is an Euler-Maruyama discretization (with stepsize 1) of
the continuous-time overdamped Langevin diffusion:

1
dX; =~ VF(Xo)dt + V2N-1dW, (15)

wher W; is a standard d-dimensional Brownian motion
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Outline of the Proof (cont.)

@ To bound the average of W distance between E(x,-(k)) and 7
over 1 < i < N, main idea of our proof technique is to bound

the following three terms:
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Outline of the Proof (cont.)

@ To bound the average of W distance between E(x,-(k)) and 7
over 1 < i < N, main idea of our proof technique is to bound

the following three terms:
@ The L2 distance between X(¥) and their average (mean)
o _ L
=S50
for1<i<N
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Outline of the Proof (cont.)

@ To bound the average of W distance between E(x,-(k)) and 7
over 1 < i < N, main idea of our proof technique is to bound

the following three terms:
@ The L2 distance between X(¥) and their average (mean)

(k) - 1
X\ = ==
N
for1<i<N
@ The L2 distance between the average iterate (k) and iterates
xy obtained from Euler-Maruyama discretization of overdamped
Langevin SDE; and
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Outline of the Proof (cont.)

@ To bound the average of W distance between E(x,-(k)) and 7
over 1 < i < N, main idea of our proof technique is to bound

the following three terms:
@ The L2 distance between X(¥) and their average (mean)
(k) =1
X = T
for1<i<N
@ The L2 distance between the average iterate (k) and iterates
xy obtained from Euler-Maruyama discretization of overdamped
Langevin SDE; and
© The W, distance between L(xx) and , i.e., the convergence of

Euler-Maruyama discretization of the overdamped Langevin
SDE.

22/44



Decentralized SGLD

000000000000 0e0000

(k)

Uniform L? bounds between x;"’ and their average

Let x. € RY denote the unique minimizer of f(x), and

= [x],x],x],---,xT]" is an Nd-dimensional vector.
Under the assumptions of Theorem 1, we have, E[|VF(x(¥))[|2 < D? for
an k, where

C3n?N  2L%(no®N + 2dN)
=52 " a4 2 — D)

D? = 41%E||x© —x*|?+8L2 +4||VF(x*)|?

(16)

where

N
G=G (1 + 2(L+“)) , and G = J2L > (£(0) — £%), £* = min fi(x)

M x€ERI

(7)
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Outline of the Proof (cont.)

@ It is clear from the DE-SGLD iterations that the deviations
between the iterates x,-(k) and their means X(¥) depend on the
magnitude of the gradients VF(x(K), the stepsize as well as
the magnitude of the injected Gaussian noise.
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Outline of the Proof (cont.)

@ It is clear from the DE-SGLD iterations that the deviations
between the iterates x,-(k) and their means X(¥) depend on the
magnitude of the gradients VF(x(K), the stepsize as well as
the magnitude of the injected Gaussian noise.

@ Building on Lemma 2 which gives us a control over the second
moment of the gradients, we provide uniform L, bounds

between the iterates x,-(k) and their means.
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Outline of the Proof (cont.)

@ It is clear from the DE-SGLD iterations that the deviations
between the iterates x,-(k) and their means X(¥) depend on the
magnitude of the gradients VF(x(K), the stepsize as well as
the magnitude of the injected Gaussian noise.

@ Building on Lemma 2 which gives us a control over the second
moment of the gradients, we provide uniform L, bounds
between the iterates x%

-’ and their means.

Under the assumptions of Theorem 1, for any k, we have

4D?n? +402N7]2 + 8dNn
(1-%72 (1-%5) (1-%)

where D is defined in (16) and ¥ is given in (12)

N
S E|x—x0)12 < 4524 ||x @) 12+
=1
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Outline of the Proof (cont.)

Note that we can deduce from (9) that

1 _
0 = 59— Lo F(0) 1 nscq D) /2D (18)
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Outline of the Proof (cont.)

Note that we can deduce from (9) that

1 _
0 = 59— Lo F(0) 1 nscq D) /2D (18)

where

Eis1 = i[ %) = V()] (19)

Under the assumptions of Theorem 1, for any k, we have

452k 412D%n2  4L%0%p? 8dn
E 2 o E[x(©)]2
||gk+l” =N HX H + N(]. _ ,7)2 + (1 _ ,?2) + (]_ _ 5/2)

where &1 is defined in (19)
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[? distance between the mean and the discretized
overdamped SDE

Under the assumptions of Theorem 1, for every k,

E[x1) — x|

< n N (1 +nL)? ( 412D% n 412%0%n . 8L%d
To\p(1-%) -2 AN (1-5) 0 (1-7?)

k

o2 52k _ (1 —np(l — %)) 41252 o

+ nL =2 nlL : N EHX H
u(l = )N ¥ =1+nu(l- %)

26 /44
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W, Distance between the iterates and the Gibbs distribution

Bounds on the W, distance between the Euler-Maruyama
discretization xx of the overdamped Langevin diffiusion and Gibbs
distribution 7 has been established in the literature!

!Dalalyan, A.S. and Karagulyan, A.G. (2019). User-friendly guarantees for
the Langevin Monte Carlo with inaccurate gradient. Stochastic Processes and

their Applications. 129(12), 5278-5311
27/ 44
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W, Distance between the iterates and the Gibbs distribution

Bounds on the W, distance between the Euler-Maruyama
discretization xx of the overdamped Langevin diffiusion and Gibbs
distribution 7 has been established in the literature!

For any n € (0, ET’H we have

Wa(L(xe), 7) < (1 — un) Wa(L(x0), 7) + %‘“ dN-1

!Dalalyan, A.S. and Karagulyan, A.G. (2019). User-friendly guarantees for
the Langevin Monte Carlo with inaccurate gradient. Stochastic Processes and

their Applications. 129(12), 5278-5311
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Decentralized SGHLMC

@ We introduce the following algorithm which we call
decentralized stochastic gradient Hamiltonian Monte Carlo
(DE-SGHMCQ): For each agent i =1,2,--- | N,

v,-(kH) = v,-(k) —n |y [ W 4 ¥f, ( )] + V2w, (k+1) (20)

A 2 W
JEQ;
(k+1) . . . S .
where w; is the Gaussian noise and Vf; is the noisy

gradient introduced just as before for DE-SGLD.
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Decentralized SGHLMC (cont.)

@ Let us define the average at k-th iteration as:
(k) _ 1 L0 _ky 1 LN
X :NZX,- Y :NZV,- (22)

i=1 i=1
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Decentralized SGHLMC (cont.)

@ Let us define the average at k-th iteration as:
PRI R WO R W0
X :NZX,- Y :N;vi (22)

i=1

@ Since W is doubly stochastic, we get

1 N
o(k+1) _ gk~ o(k) _ (k) (k+1) (k+1)
v = Vi Ve -E, \%/ ( ) n&E ) 4\ 2yniw
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Decentralized SGHLMC (cont.)

Assume E||x(9||2 and E||v(9)||2 are finite. Let 1 be given satisfying

w
0 e (0, m> (23)

Then, we can choose ~ € (0, %] such that 5 =1—-9n € [0,1) and
satisfies. the inequality

= (1A —an? 1+ MY
B < f = min (’V4”“,vf c1u3(64N) (24)

where )
n-p

1+8)+0-) ()

C1 =

N =
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Decentralized SGHLMC (cont.)

Theorem 7 (cont.)

For every k, DE-SGHMC iterates x,-(k) given by (21) and their
average x(K) satisfy

W (L (x(k)) ,7[')

_ 1/2 _
< (- ) ((BIK - x]?) " + yf2utan )

1— 2, (1 - 7L K ok 1/2
e <(1 nn:f(l - ZL))) - 12 % (E1OF)" + v
(25)
with £ = O(1)
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Decentralized SGHLMC (cont.)

Theorem 7 (cont.)

Furthermore,

< (1= pn?)k ((EH?(O) — X*H2>1/2 + 2M—1dN—1) n V23X
1= (1 B1)) 52\ 217 12
| B s

(26)

with Es = O(1), and 8 = O(n*) where O(.) hides the constants
that depend on d, i, L, 0, and 4 and N

T (Ellx

0))2"
1
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Discussions

@ We observe that

kl|_>nr;o sup W» (E ()?(k)) ,7r> = O(n)

where O(.) hides other constants (d, i, L, o, N, and )
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Discussions

@ We observe that

i (k) —
kl|_>nr;o sup W» (E (x ) ,7r> = O(n)
where O(.) hides other constants (d, i, L, o, N, and )

e With the iteration K, we can choose 7 = 1/“"57‘/? for a
constant ¢ > 1
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Decentralized SGHLMC
O0000e

Discussions

@ We observe that

i (k) —
kl|_>nr;o sup W» (E (x ) ,7r> = O(n)
where O(.) hides other constants (d, i, L, o, N, and )

e With the iteration K, we can choose 7 = C'"ET‘/R for a

constant ¢ > 1
o Consequently,

where the last O(+) term hides constants that depends on
x© v d . L 0,5 N and c
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Numerical Experiments

@ We present our numerical results to validate our theory and
investigate the performance of DE-SGLD and DE-SGHMC
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Numerical Experiments
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Numerical Experiments

@ We present our numerical results to validate our theory and
investigate the performance of DE-SGLD and DE-SGHMC
@ We mainly focus on Bayesian linear regression and Bayesian
logistic regression
@ We consider mainly three network architectures
e Fully-connected
e Circular
o A disconnected
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Network Architecture

Numerical Experiments
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(a) Fully-connected

(d) Grid

(b) Star

(c) Circular

(e) Disconnected
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Experiment Design

@ Data
5] NN(O7£2)7 )<j ’\’./V‘(O7 I)7 Yj :XTXI+6J

where ¢; are i.i.d scalars with { = 1,x € R? and the prior
distribution of x ~ A(0, A/) with A =10
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Experiment Design

@ Data

5] NN(07£2)7 )QNN(O, I)7 yJ:XT)g_‘_(SJ

where ¢; are i.i.d scalars with { = 1,x € R? and the prior
distribution of x ~ A(0, A/) with A =10

@ For Bayesian Linear regression we have the posterior
distribution

T(x) ~ N(m, V), m= (71 +XTX/e) 7 (XTy/€)
V=(X"Xx/&e+x
where & = A/ is the covariance matrix of the prior distribution

of x, X = [X{, X, X{,---]T and Y = [y1,y2,---]T are the
matrices containing all the data points.
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Experiment Design

@ Data

6; ~ N(0,62), X; ~N(0,1), y;=x"X;+9;
where ¢; are i.i.d scalars with { = 1,x € R? and the prior
distribution of x ~ A(0, A/) with A =10

@ For Bayesian Linear regression we have the posterior
distribution

T(x) ~ N(m, V), m= (T +XTX/)H(XTy /)

V=(X"Xx/&e+x
where & = A/ is the covariance matrix of the prior distribution

of x, X = [X{, X, X{,---]T and Y = [y1,y2,---]T are the
matrices containing all the data points.

@ We simulate 5000 data points and partition them randomly
among N = 100 agents.
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Experiment Design (cont.)

@ Each agent has access to its own data but not to other agents'’
data.
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Experiment Design (cont.)

@ Each agent has access to its own data but not to other agents'’

data.
@ The posterior distribution 7(x) oc e f(*) is of the form
F(x) = X, (x) with

ni i i 1
fi(x) = = 2_log p(yjlx, Xj) — 7 log p(x)

j=1
n; 1
_ T yi 2
=207 =X+ gl
where,
Nx, XN = 2 (/=7 X)) MG
Uyl X)) = e . p(x) e x|
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Results (DE-SGLD Method)

@ Tune the step size n = 0.009 and consider the deterministic
gradient (i.e., 0 = 0)

38/44



Numerical Experiments
[e]e] lelele]e]e]

Results (DE-SGLD Method)

@ Tune the step size n = 0.009 and consider the deterministic
gradient (i.e., cr = 0)
o It follows that x ~ N(mk gk)) for some mean vector m¥

and covariance matrix Z,(. )

38/44



Numerical Experiments
[e]e] lelele]e]e]

Results (DE-SGLD Method)

@ Tune the step size n = 0.009 and consider the deterministic
gradient (i.e., cr = 0)

o It follows that x ~ N(mk gk)) for some mean vector m¥
and covariance matrix Z,(. )

e Based on 100 runs we estimate mX and ng) and compute W»
distance w.r.t w(x) ~ N(m, V)

38/44



Numerical Experiments
[e]e] lelele]e]e]

Results (DE-SGLD Method)

@ Tune the step size n = 0.009 and consider the deterministic
gradient (i.e., cr = 0)

o It follows that x ~ N(mk gk)) for some mean vector m¥
and covariance matrix Z,(. )

e Based on 100 runs we estimate mX and ng) and compute W»
distance w.r.t w(x) ~ N(m, V)

@ We also com-

(k)

pute the average X;"’ over the iterations and obtain the following

graph 38/44



Numerical Experiments
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Results (DE-SGLD Method)

@ Tune the step size n = 0.009 and consider the deterministic
gradient (i.e., cr = 0)

o It follows that x ~ N(mk gk)) for some mean vector m¥

and covariance matrix Z,(. )
e Based on 100 runs we estimate mX and ng)
distance w.r.t w(x) ~ N(m, V)
e We also com-
(k)

pute the average X;

and compute W,

over the iterations and obtain the following

— Agentl xf — Agentl x — Agentl xf

—— Agent2 x§ —— Agentz x —— Agentz x§
—— Agent3 x§

—— Agentd x§

—— Agent3 x§
—— Agentd x§

—— Agent3 x§
—— Agentd x§
—— Mean of agents %

—— Mean of agents £ —— Mean of agents £

W2 Distance
W2 Distance

W2 Distance

o o o !
0 0 160 50 ] £ 100 50 o 0 o0 50
Iterations k Iterations k terations k
(a) Fully-connected (b) Circular (c) Disconnected

Figure 2: Performance of DE-SGLD for Bayesian regression on different network structures
with N = 100 agents. The results of the first 4 agents J:iC and the node averages
k= Efvzl mik)/N are reported.
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Results (DE-SGHMC)

@ We investigate the DE-SGHMC method on the same data set
with the same three network structure
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Numerical Experiments
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Results (DE-SGHMC)

@ We investigate the DE-SGHMC method on the same data set
with the same three network structure

@ The stepsize and the friction coefficient are tuned to n = 0.1
and v = 7, respectively. And we obtain the following graph

—— Agentl x| —— Agentl x} —— Agentl x|
—— Agentz x§ —— Agent2 x§ —— Agent2 x§
o o @
Q —— Agent3 x§ Q —— Agent3 x§ g —— Agent3 x§
o2 g2 o2
7 —— Agentd x¥ 7 —— Agentd x§ & —— Agenta x
a ; a ; o .
o —— Mean of agents X o —— Mean of agents X a5 —— Mean of agents %
= =) £ -
0 ! 0 —— o D —
[0 50 100 150 [0 50 100 150 ] 0 1 130
Iterations k Iterations k Iterations k
(a) Fully-connected (b) Circular (c) Disconnected

Figure 3: Performance of DE-SGHMC method for Bayesian regression on different network
structures. The stepsize 1 and the friction coefficient «y are tuned to the dataset

where we take . =0.1 and v = 7.
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@ we investigate the effect of changing stepsize, batch size and
the network structure on the speed of convergence where we
stick to the DESGLD method for this set of experiments
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Numerical Experiments

[e]e]e]e] lelele]

@ we investigate the effect of changing stepsize, batch size and
the network structure on the speed of convergence where we
stick to the DESGLD method for this set of experiments

@ We measure the 2-Wasserstein distance to the target m with a
similar approach as before by fitting a Gaussian distribution
J\/'(m,gk), Z,(k)) to the empirical distribution of x,-(k) over 100
independent runs.
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L0 — Batch=1 . —— Step 1=0.005 : — Fully-connected
T o0s — Batch=5 - step n=0.01 —— Circular
T o0s 3
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Figure 4: Performance of DE-SGLD method for Bayesian regression under different settings.
Figures are based on one randomly picked agent. The y-axis is presented in a
logarithmic scale in (a) and (b) .

@ Both Figure 4(a) and Figure 4(b) are based on the
fully-connected network architecture. In Figure 4(a), we fixx
the stepsize to 7 = 0.009 and vary the batch sizes (the number
of data points sampled with replacement to estimate the
gradient)

41/44



Numerical Experiments

[e]e]e]o]e] lele]
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Figure 4: Performance of DE-SGLD method for Bayesian regression under different settings.
Figures are based on one randomly picked agent. The y-axis is presented in a
logarithmic scale in (a) and (b) .

@ Both Figure 4(a) and Figure 4(b) are based on the
fully-connected network architecture. In Figure 4(a), we fixx
the stepsize to 7 = 0.009 and vary the batch sizes (the number
of data points sampled with replacement to estimate the
gradient)

@ We conclude that different batch sizes affect the asymptotic
error the iterates have with respect to the 2-Wasserstein
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Figure 4: Performance of DE-SGLD method for Bayesian regression under different settings.
Figures are based on one randomly picked agent. The y-axis is presented in a
logarithmic scale in (a) and (b) .

@ In Figure 4(b), we used stochastic gradients with batch size
b = 25 while we varied the stepsize

@ The result clearly demonstrates the trade-off between the
convergence rate and the asymptotic accuracy; for larger
stepsize the algorithm converges faster to an asymptotic error
region but the accuracy becomes worse as predicted by

Theorem 1
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Figure 4: Performance of DE-SGLD method for Bayesian regression under different settings.
Figures are based on one randomly picked agent. The y-axis is presented in a
logarithmic scale in (a) and (b) .

@ In Figure 4(c) we report the effect of network structure with a
constant stepsize 17 = 0.008 and batch size b = 25 where we
report the performance of a randomly picked agent.

@ The fastest convergence is observed for the fully-connected
network.
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@ For both methods, we show that the distribution of the iterate
x(K) of node i converges linearly (in k) to a neighborhood of
the target distribution in the 2-Wasserstein metric when the
target density 7(x) oc e 7(¥) is strongly log-concave (i.e. f is
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Conclusion

e We studied DE-SGLD and DE-SGHMC methods which allow
scalable Bayesian inference for decentralized learning settings

@ For both methods, we show that the distribution of the iterate
x(K) of node i converges linearly (in k) to a neighborhood of
the target distribution in the 2-Wasserstein metric when the
target density 7(x) oc e 7(¥) is strongly log-concave (i.e. f is
strongly convex) and f is smooth

@ Our results are non-asymptotic and provide performance
bounds for any finite k.

@ We also illustrated the efficiency of our methods on the
Bayesian linear regression and Bayesian logistic regression
problems

44 /44



	The Article
	Decentralized SGLD
	Decentralized SGLD

	Decentralized SGHLMC
	Numerical Experiments
	Bayesian Linear Regression

	Conclusion

