
Boosting Algorithm: Adaptive Boosting
Method (AdaBoost)

Rafiq Islam

2024-12-02

Table of contents

Introduction . 1
Key Characteristics of Boosting: . 1
Mathematical Visualization . 2

Iteration 1 . 2
Iteration 2 . 4

Adaptive Boosting (AdaBoost) Algorithm . 8
Reference . 9

Introduction

Boosting is a powerful ensemble learning technique that focuses on improving the performance
of weak learners to build a robust predictive model. Now the question is what the heck is weak
learner? Well, roughly speaking, a statistical learning algorithm is called a weak learner if it is
slightly better than just random guess. In contrast, a statistical learning algorithm is called a
strong learner if it can be made arbitrarily close to the true value. Unlike bagging (bootstrap
aggregating, e.g. random forest), which builds models independently, boosting builds models
sequentially, where each new model corrects the errors of its predecessors. This approach
ensures that the ensemble concentrates on the difficult-to-predict instances, making boosting
highly effective for both classification and regression problems.

Key Characteristics of Boosting:

1. Sequential Model Building: Boosting builds one model at a time, with each model
improving upon the errors of the previous one.

1

2. Weight Assignment: It assigns weights to instances, emphasizing misclassified or
poorly predicted ones in subsequent iterations.

3. Weak to Strong Learners: The goal of boosting is to combine multiple weak learners
(models slightly better than random guessing) into a strong learner.

Mathematical Visualization

Before writing the formal algorithm, let’s do some math by hand. Say, we have a toy dataset:

x1 x2 y

1 2 1
2 1 1
3 2 -1
4 3 -1

Here:

• x1 and x2 are features.
• y is the target label, with values +1 or −1.

Now, let’s apply the AdaBoost algorithm step-by-step using this dataset.

Iteration 1

Step 1: Initialize Weights
Initially, all data points are assigned equal weights:

w
(1)
i = 1

N
= 1

4 = 0.25

Weights: w = [0.25, 0.25, 0.25, 0.25].

Step 2: Train Weak Learner

Suppose we use a decision stump (a simple decision rule) as the weak learner. The first decision
stump might split on x1 as:

• Predict +1 if x1 ≤ 1.5, otherwise −1.

2

h1(x) =
{

+1 if x1 ≤ 1.5
−1 otherwise

Note, that even though we are deciding based on the feature x1, however, for h1(x) learner, x
is the row from the data set, i.e. x = [x1, x2]. Therefore, for h1(x1) would mean that, we are
feeding first row to the learner h at iteration 1.

Step 3: Evaluate Weak Learner

Predictions for the dataset:
h1(x) = [1, −1, −1, −1]

But our true labels are [1, 1, −1, −1]. So the error

ϵ1 =
∑4

i=1 w1
i ⊮(yi ̸= h1(xi))∑4

i=1 w1
i

where, ⊮ is an indicator function that equals 1 when the prediction is incorrect and 0 otherwise.
Therefore, in iteration 1:

ϵ1 = 0.25(0 + 1 + 0 + 0)
1 = 0.25

Step 4: Calculate α1

α1 = ln
(1 − ϵ1

ϵ1

)
= 1.0986

Step 5: Update Weights:

For each instance:

w
(1)
i = w

(1)
i · exp (α1 · yi · h1(xi))

Now you may wonder how and from where we came up with this updating rule? We will
explain this update process in the next post, but for now let’s just focus on the update.

3

w1
1 = w1

1eα1⊮(y1 ̸=h1(x1)) = 0.25e1.0986×0 = 0.25
w1

2 = w1
2eα1⊮(y1 ̸=h1(x2)) = 0.25e1.0986×1 = 0.75

w1
3 = w1

3eα1⊮(y1 ̸=h1(x3)) = 0.25e1.0986×0 = 0.25
w1

4 = w1
4eα1⊮(y1 ̸=h1(x4)) = 0.25e1.0986×0 = 0.25

Updated weights (before normalization):

[0.25, 0.75, 0.25, 0.25]

Normalize to ensure the weights sum to 1:

w
(1)
i = w

(1)
i∑
w

(1)
i

Final normalized weights: w = [0.17, 0.5, 0.17, 0.17]. Notice that, for the incorrect prediction,
the weight increased and for the correct prediction the weights decreased.

Iteration 2

Similarly, we proceed with second iteration with the following weak learner:

h2(x) =
{

+1 ifx2 ≤ 1.5
−1 otherwise

For this learner, the prediction

h2(x) = [−1, 1, −1, −1]

where as the actual labels are [1, 1, −1, 1]. So, the error

ϵ2 = 0.17 × 1 + 0.5 × 0 + 0.17 × 0 + 0.17 × 0
1 = 0.17

and

α2 = ln
(0.756

0.244

)
= 1.586

4

Next, we update the weights

w2
1 = w2

1eα2⊮(y1 ̸=h2(x1)) = 0.17e1.586×1 = 0.83
w2

2 = w2
2eα2⊮(y1 ̸=h2(x2)) = 0.5e1.1308×0 = 0.5

w2
3 = w2

3eα2⊮(y1 ̸=h2(x1)) = 0.17e1.586×0 = 0.17
w2

4 = w2
4eα2⊮(y1 ̸=h2(x1)) = 0.17e1.586×0 = 0.17

So, w = [0.83, 0.5, 0.17, 0.17] and after normalizing w = [0.50, 0.3, 0.10, 0.10]. The final ensemble
model combines the weak learners using their weights (α):

F (x) = sign (α1 · h1(x) + α2 · h2(x))

For the toy dataset:

1. α1 = 1.0986, h1(x) = [1, −1, −1, −1]
2. α2 = 1.586, h2(x) = [−1, 1, −1, −1]

Weighted predictions:

F (x) = (α1 · h1(x) + α2 · h2(x))
= [1.0986 − 1.586, −1.0986 + 1.586, −1.0986 − 1.586, −1.0986 − 1.586]
= [−1, 1, −1, −1]

If we keep iterating this way, we will have

import matplotlib.pyplot as plt
import numpy as np
from mywebstyle import plot_style
plot_style('#f4f4f4')

Data points for visualization
iterations = [1, 2]
errors = [0.25, 0.167] # Errors from the two iterations
alphas = [1.0968, 1.586] # Alpha values for the weak learners

Extend to further iterations
Simulating error reduction and alpha calculation for a few more iterations

5

for i in range(3, 6): # Iterations 3 to 5
new_error = errors[-1] * 0.7 # Simulating decreasing errors
errors.append(new_error)
alphas.append(np.log((1 - new_error) / new_error))
iterations.append(i)

Plot weighted errors over iterations
plt.figure(figsize=(8, 6))
plt.plot(iterations, errors, marker='o')
plt.title("Weighted Error Reduction Over Iterations in AdaBoost")
plt.xlabel("Iteration")
plt.ylabel("Weighted Error")
plt.grid()
plt.show()

Plot alpha values (importance of weak learners)
plt.figure(figsize=(8, 6))
plt.plot(iterations, alphas, marker='o', color='orange')
plt.title("Alpha Values Over Iterations in AdaBoost")
plt.xlabel("Iteration")
plt.ylabel("Alpha (Learner Weight)")
plt.grid()
plt.show()

6

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Iteration

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
W

ei
gh

te
d

Er
ro

r
Weighted Error Reduction Over Iterations in AdaBoost

7

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Iteration

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Al

ph
a

(L
ea

rn
er

 W
ei

gh
t)

Alpha Values Over Iterations in AdaBoost

Adaptive Boosting (AdaBoost) Algorithm

Now it’s time to write the formal algorithm for Adaptive Boosting or AdaBoost method. It is
one of the earliest and most widely used boosting algorithms. It was introduced by Freund and
Schapire in 1996. AdaBoost combines weak learners, typically decision stumps (single-level
decision trees), to form a strong learner.

Algorithm: AdaBoost

1. Initialize the observation weights wi = 1
N for i = 1, 2, · · · , N 2. For m = 1 to M : (a) Fit a

classifier Gm(x) to the training data using weights wi (b) Compute

errm =
∑N

i=1 wi⊮(yi ̸=Gm(xi))∑N

i=1 wi

(c) Compute αm = log
(

1−errm
errm

)
(d) Set

wi → wi · exp [αm · ⊮(yi ̸= Gm(xi))], i = 1, 2, · · · , N 3. Output
G(x) = sign

[∑M
m=1 αmGm(x)

]

8

In the next posts, we will continue discussing on this algorithm, specially the loss function,
optimization techniques, advantages and limitations of AdaBoost, and many other facts about
this algorithm.

Thanks for reading this.

Reference

• Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. “The elements of statistical
learning: data mining, inference, and prediction.” (2017).

Share on

�

ï

�

You may also like

9

	Introduction
	Key Characteristics of Boosting:
	Mathematical Visualization
	Iteration 1
	Iteration 2

	Adaptive Boosting (AdaBoost) Algorithm
	Reference

