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Introduction

Bayesian inference is a powerful statistical method that applies the principles of Bayes’s theorem
to update the probability of a hypothesis as more evidence or information becomes available.
It is widely used in various fields including machine learning, to make predictions and decisions
under uncertainty.
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Bayes’s theorem is based on the definition of conditional probability. For two events A and B
with P(B) ̸= 0, we define the conditional probability of occurring A given that B has already
occurred.

A B ′ B A ′A B

A B

P(A|B) = P(A∩B)
P(B)

Similarly, the conditional probability of occuring B given that A has already occured with
P(A) ̸= 0 is

P(B|A) = P(A ∩ B)
P(A)

From this equation, we can derive that the joint probability of A ∩ B is

P(A ∩ B) = P(B|A)P(A) = P(A|B)P(B)

Bayes’s Theorem

For Two Events or Random Variables

Bayes’s theorem is based on these conditional probabilities. It states that the likelihood of
occuring the event A given that the event B has occured is given as
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P(A|B) = P(B|A)P(A)
P(B) = P(B|A)P(A)

P(B ∩ A) + P(B ∩ Ac) = P(B|A)P(A)
P(B|A)P(A) + P(A|B)P(B)

where, in Bayesin terminology,

• P(A|B) is called posterior probability of A given the event B or simply, posterior
distribution.

• P(B|A) is the likelihood: the probability of evidence B given that A is true.

• P(A) or P(B) are the probabilities of occuring A and B respectively, without any
dependence on each other.

• P(A) is called the prior probability or prior distribution and P(B) is called the marginal
likelihood or marginal probabilities.

For two continuous random variable X and Y , the conditional probability density function of
X given the occurence of the value y of Y can be given as

fX|Y (x|y) = fX,Y (x, y)
fY (y)

or the otherway around,

fY |X(y|x) = fX,Y (x, y)
fX(x)

Therefore, the continuous version of Bayes’s theorem is given as follows

fY |X(y) =
fX|Y (x)fY (y)

fX(x)

Generalization of Bayes’s Theorem

For n disjoint set of discrete events B1, B2 . . . , Bn where Ω = ∪n
i Bi and for any event A ∈ Ω,

we will have

P(A) =
n∑

i=1
P(A ∩ Bi)

and this is true by the law of total probability.
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A

B1 B2 B3 Bn 1 Bn

Then the Bayes’s rule extends to the following

P(Bi|A) = P(A|Bi)P(Bi)
P(A) = P(A|Bi)P(Bi)∑n

i=1 P(A|Bi)P(Bi)

The continuous version would be

fY =y|X=x(y|x) =
fX|Y =y(x)fY (y)∑n

i=1
∫ ∞

−∞ fX|Y =y(x|u)fY (u)du

Probabilistic Models

Bayes’s theorem gets us the posterior probability given the data with a prior. Therefore, for
classification tasks in machine learning, we can use Bayesin style models for classification by
maximizing the numerator and minimizing the denominator in the previous equation, for any
given class. For instance, say we have a d− dimensional data collected as a random matrix X
and the response variable y is a categorical one with c categories. Then for a given data vector
X ′, the posterior distibution that it falls for category j is given as

P(y = j|X = X ′) = πjfj(X ′)∑c
i=1 πifi(X ′)

where,

• fi(X) is the probability density function of the features conditioned on y being class i

• πi = P(y = i)
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We can estimate πi as the fraction of observations which belong to class i.

Linear Discriminant Analysis (LDA)

To connect Linear Discriminant Analysis (LDA) with the Bayesian probabilistic classification,
we start by considering the Bayes Theorem and the assumptions made in LDA. We adapt the
Bayes theorem for classification as follows

P (Ck|x) = P (x|Ck)P (Ck)
P (x)

Where:

• P (Ck|x) is the posterior probability that x belongs to class Ck,
• P (x|Ck) is the likelihood (the probability of observing x given class Ck),
• P (Ck) is the prior probability of class Ck,
• P (x) is the marginal likelihood (normalizing constant).

Gaussian Assumption in LDA

LDA assumes that:

• The likelihood for each class follows a Gaussian distribution with a common covariance
matrix Σ, i.e.,

P (x|Ck) = 1
(2π)d/2|Σ|1/2 exp

(
−1

2(x − µk)T Σ−1(x − µk)
)

where µk is the mean of class Ck and Σ is the shared covariance matrix. Now let’s talk about
µk and Σ.

One feature or dimension
For a single feature x and Nk samples xk,1, xk,2, . . . , xk,N for class Ck, the mean µk:

µk = 1
Nk

Nk∑
i=1

xk,i

and variance σ2 is calculated as the variance within-class variance σ2
k for each class

σ2
k = 1

Nk − 1

Nk∑
i=1

(xk,i − µk)2
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and then the pooled variance σ2 is calculated by averaging these variances, weighted by the
degrees of freedom in each class:

σ2 = 1
n − C

C∑
k=1

Nk∑
i=1

(xk,i − µk)2

where, n is the total number of samples accross all classes, C is the number of classes, and xk,i

are samples from each class Ck.

For multi-dimensional data

If we have d features (e.g., if x is a d−dimensional vector), we calculate the mean vector µk for
each feature across the Nk samples in class Ck as follows

µk = 1
Nk

Nk∑
i=1

xk,i

and the covariance matrix for each class Ck:

Σk = 1
Nk

Nk∑
i=1

(xk,i − µk)(xk,i − µk)T

Therefore, the pooled variance

Σ = 1
n − C

C∑
k=1

Nk∑
i=1

(xk,i − µk)(xk,i − µk)T

Log Likelihood Ratio

For simplicity, let’s say we have only two classes C1 and C2. To derive a decision boundary,
we take the ratio of the posterior probabilities for two classes C1 and C2, and then take the
logarithm. The rationality behind this approach is when we divide a relatively bigger number
by a smaller number we get a larger number and smaller number if we reverse the divison.
Since we are working with the probabilities, therefore, we take logarithm.

log
(

P (C1|x)
P (C2|x)

)
= log

(
P (x|C1)P (C1)
P (x|C2)P (C2)

)
= log

(
P (x|C1)
P (x|C2)

)
+ log

(
P (C1)
P (C2)

)
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Using the Gaussian likelihood assumption, we expand the terms P (x|C1) and P (x|C2):

log
(

P (x|C1)
P (x|C2)

)
= log


1

(2π)
d
2
√

|Σ|
e− 1

2 (x−µ1)T Σ−1(x−µ1)

1
(2π)

d
2
√

|Σ|
e− 1

2 (x−µ2)T Σ−1(x−µ2)


= −1

2
[
(x − µ1)T Σ−1(x − µ1) − (x − µ2)T Σ−1(x − µ2)

]
= −1

2
[
xT Σ−1x − 2xT Σ−1µ1 + µT

1 Σ−1µ1 − xT Σ−1x + 2xT Σ−1µ2 − µT
2 Σ−1µ2

]
= −1

2
[
−2xT Σ−1µ1 + µT

1 Σ−1µ1 + 2xT Σ−1µ2 − µT
2 Σ−1µ2

]
= xT Σ−1(µ1 − µ2) − 1

2(µT
1 Σ−1µ1 + µT

2 Σ−1µ2)

= xT w + constant; where, w = Σ−1(µ1 − µ2)

Therefore, we can write

log
(

P (x|C1)
P (x|C2)

)
= wT x + constant

since wT x = xT w, as inner product is commutative. This is the linear projection vector w
that LDA uses.

Fisher’s Discriminant Ratio

Now, we derive the Fisher’s Discriminant Ratio. The goal is to find a projection w that
maximizes the separation between classes (between-class variance) and minimizes the spread
within each class (within-class variance).

• Between-class scatter SB is defined as:

SB = (µ1 − µ2)(µ1 − µ2)T

• Within-class scatter SW is the covariance matrix Σ, assuming equal covariance for
both classes.
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The Fisher’s discriminant ratio is the objective function to maximize:

J(w) = wT SBw
wT SW w

Substituting SB and SW into this expression, we get:

J(w) = wT (µ1 − µ2)(µ1 − µ2)T w
wT Σw

Thus, maximizing this ratio gives the direction w = Σ−1(µ1 − µ2), which is the same as the
result from the Bayesian classification.

Summary

The Fisher’s Discriminant Ratio arises as a byproduct of maximizing the posterior probability
ratios between two classes under Gaussian assumptions. It captures the optimal linear projection
to maximize the separation between classes (via between-class scatter) and minimize the spread
within classes (via within-class scatter).

Quadratic Discriminant Analysis (QDA)

Unlike LDA, we allow each class Ck to have its own covariance matrix Σk, leading to a more
flexible model capable of handling classes with different shapes and orientations in feature
space. Here’s how we can derive the discriminant function for QDA.

Discriminant Function for QDA

In QDA, we aim to classify a sample x based on the probability that it belongs to class Ck,
given by P (Ck|x). Using Bayes’ theorem, we have:

P (Ck|x) = P (x|Ck)P (Ck)
P (x)

Since we’re primarily interested in maximizing this value to classify x, we can focus on
maximizing the posterior probability P (x|Ck)P (Ck).
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Likelihood of x in Class Ck

Assuming that the feature vector x follows a Gaussian distribution within each class Ck, the
likelihood P (x|Ck) is given by:

P (x|Ck) = 1
(2π)d/2|Σk|1/2 exp

(
−1

2(x − µk)T Σ−1
k (x − µk)

)

where:

• µk is the mean vector for class Ck,
• Σk is the covariance matrix for class Ck,
• d is the dimensionality of x.

Log of the Posterior (Quadratic Discriminant)

To simplify the computation, we take the logarithm of the posterior probability. Ignoring
constant terms that do not depend on k, we have:

ln P (x|Ck)P (Ck) = −1
2

(
(x − µk)T Σ−1

k (x − µk) + ln |Σk|
)

+ ln P (Ck)

The discriminant function for QDA can then be expressed as:

δk(x) = −1
2(x − µk)T Σ−1

k (x − µk) − 1
2 ln |Σk| + ln P (Ck)

Expanding the Quadratic Term

Let’s expand the quadratic term:

(x − µk)T Σ−1
k (x − µk)

Expanding this gives:

(x − µk)T Σ−1
k (x − µk) = xT Σ−1

k x − 2xT Σ−1
k µk + µT

k Σ−1
k µk

Substituting this expansion into the discriminant function:

δk(x) = −1
2

(
xT Σ−1

k x − 2xT Σ−1
k µk + µT

k Σ−1
k µk

)
− 1

2 ln |Σk| + ln P (Ck)
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Final Form of the QDA Discriminant Function

Rearranging terms, we get:

δk(x) = −1
2xT Σ−1

k x + xT Σ−1
k µk − 1

2µT
k Σ−1

k µk − 1
2 ln |Σk| + ln P (Ck)

Key Points in QDA

• Quadratic term: Unlike LDA, QDA includes a quadratic term in x, −1
2xT Σ−1

k x, which
allows QDA to model classes with different covariances.

• Linear term: xT Σ−1
k µk is a linear term in x.

• Constant term: The remaining terms −1
2µT

k Σ−1
k µk− 1

2 ln |Σk|+ln P (Ck) are independent
of x.

Because of the quadratic term, the decision boundaries in QDA are generally quadratic
surfaces, allowing it to handle more complex class separations than LDA, which has linear
boundaries.
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