
Understanding Decision Tree Classifier: A
Mathematical Approach

Rafiq Islam

2024-08-23

Table of contents

Decision Tree . 1
The Core Idea Behind Decision Trees . 1
Building a Decision Tree . 8
Implementation of Decision Tree: Scikit-learn . 9
Discussion on Decision Tree . 11
Reference . 11

Decision Tree

The Decision Tree Classifier is a powerful, interpretable, and widely-used algorithm in machine
learning for binary or multi-class classification problems. Its simplicity and visual appeal
make it a go-to choice for classification tasks. However, behind this simplicity lies a series of
mathematical decisions that guide how the tree is constructed.

The Core Idea Behind Decision Trees

Decision Tree contains two main type of nodes, decision nodes and leaf nodes. A decision node
is a node where a condition is applied to split the data and a leaf node contains the class of a
data point. At its heart, a decision tree works by recursively splitting the dataset based on
feature values. The goal of each split is to increase the homogeneity of the resulting subgroups,
ideally separating the different classes as much as possible. The splitting process relies on a
measure of impurity or disorder. The two most common metrics used for this purpose are Gini
Impurity and Entropy (used in Information Gain).

1

Gini Impurity

The Gini Impurity measures the likelihood of misclassifying a randomly chosen element from the
dataset if it were labeled according to the distribution of classes in that subset. Mathematically,
the Gini Impurity for a node t is calculated as:

G(t) = 1 −
n∑

i=1
p2

i

where pi is the proportion of samples belonging to class i at node t.

Entropy and Information Gain

Entropy, borrowed from information theory, measures the disorder or uncertainty in the dataset.
It is defined as:

H(t) = −
n∑

i=1
pi log2(pi)

import math
import numpy as np
import matplotlib.pyplot as plt

x=np.arange(0.01,0.99,0.0001)
y=[-p*math.log(p,2)-(1-p)*math.log(1-p,2) for p in x]
plt.plot(x,y)
plt.xlabel('p_{\oplus}')
plt.ylabel('$H(t)$')
plt.title('Entropy')
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

2

0.0 0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0
H

(t)
Entropy

Information Gain is the reduction in entropy after a dataset is split on a feature. It is calculated
as:

IG(D, A) = H(D) −
∑

v∈Values(A)

|Dv|
|D|

H(Dv)

where:

• D is the dataset,
• A is the feature on which the split is made,
• Dv is the subset of D for which feature A has value v.

Let’s explain the math with following example.

Say, I have the data set like this

x0 x1 Class
2 3 0
3 4 0
4 6 0

3

x0 x1 Class
6 8 1
7 10 1
...

...
...

Total 20 data points and the scatter plot looks like this

data = [
[2, 3, 0], [3, 4, 0], [4, 6, 0], [6, 8, 1], [7, 10, 1],
[8, 12, 1], [5, 7, 1], [2, 5, 0], [9, 15, 1], [1, 2, 0],
[11, 3, 0], [4, 13, 1], [8, 14, 1], [1, 5, 0], [6, 2, 1],
[9, 3, 1], [15, 13, 0], [7, 5, 0], [5, 9, 0], [8, 3, 1]

]

x0 = [row[0] for row in data]
x1 = [row[1] for row in data]
classes = [row[2] for row in data]

colors = ['red' if c == 0 else 'blue' for c in classes]

plt.figure(figsize=(7, 5))
plt.grid(True)

plt.scatter(x0, x1, color=colors, s=100, edgecolor='black')

Label points with class values
for i in range(len(x0)):

plt.text(x0[i] + 0.2, x1[i] + 0.2, str(classes[i]), fontsize=9)

Set limits for the axes
plt.xlim(0, 16)
plt.ylim(0, 16)
plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
Label axes and show plot
plt.xlabel('x_0')
plt.ylabel('x_1')
plt.title('Figure 1: Scatter Plot of x_0 vs x_1 ')
plt.show()

4

0 2 4 6 8 10 12 14 16
x0

0

2

4

6

8

10

12

14

16
x 1

0
0

0

1

1

1

1

0

1

0
0

1
1

0

1
1

0

0

0

1

Figure 1: Scatter Plot of x0 vs x1

At this point, we see that the classes are not linearly separable, meaning, we can not draw any
line that separate the two classes. Notice that the minimum and maximum of feature x0 is 1
and 15, respectively. So, let’s pick a few numbers in between these two numbers. Say, our first
number is 3.5. In the first node, that is the root node, we divide the data based on the feature
x0 ≤ 3.5

5

Figure 1: Figure 2: First Split

At the root node, we have equal number of blue and red points so the proportion of the data
class is p1 = p2 = 0.5, so the entropy

H(root node) = −(0.5) log2(0.5) − (0.5) log2(0.5) = 1

Based on the condition x0 ≤ 3.5, the left and right child recieves 5 and 15 feature points
X = (x0, x1), respectively. We see that the left node is a pure node, because it contains only
the red points. Therefore, the entropies at these child nodes

H(left child) = −1 log2(1) − 0 log2(0) = 0

H(right child) = − 5
15 log2

(5
15

)
− 10

15 log2

(10
15

)
= 0.92

and the information gain at this split

IG(split1) = 1 −
(5

20 · 0 + 15
20 · 0.92

)
= 0.31

Now the burning question is how did we select the condition x0 ≤ 3.5? It could have been any
other number, say we set x0 ≤ 6.5. Then

6

Figure 2: Figure 3: Alternative Split

Based on the condition x0 ≤ 6.5, the left and right child recieves 11 and 9 feature points
X = (x0, x1), respectively. But in this case we don’t see any pure nodes and the entropies at
these child nodes

H(left child) = − 7
11 log2

(7
11

)
− 4

11 log2

(4
11

)
= 0.95

H(right child) = −3
9 log2

(3
9

)
− 6

9 log2

(6
9

)
= 0.92

and the information gain at this split

IG(split1) = 1 −
(11

20 · 0.95 + 9
20 · 0.92

)
= 0.06

Note that the information gain is much lower than the first option. Therefore, the first split is
better than this alternative split. Because the goal is to have minimum entropy value and/or
the maximum information gain. This is where the machine learning gets in the game. The
algorithm finds the optimal split based on each feature values.

7

Figure 3: Figure 4: Second Split

Now say we have a new set of feature values (x0, x1, Class) = (10, 7, 1). Based on our tree
above, since x0 is NOT less than or equal to 3.5 so it goes to the right first child. Then it
satisfies x0 ≤ 10. So it moves to the left grand child gradually traverse through the tree and
ended up to the very bottom layer left leaf node.

Building a Decision Tree

1. Choose the best feature to split on: Calculate Gini impurity or Information Gain
for each feature and select the feature that results in the highest Information Gain or
lowest Gini impurity.

2. Split the dataset: Partition the data based on the chosen feature and repeat the process
for each partition.

3. Stop conditions: The tree stops growing when all samples in a node belong to the same
class, the maximum depth is reached, or further splitting doesn’t add value.

8

Implementation of Decision Tree: Scikit-learn

import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier,plot_tree
from sklearn.metrics import accuracy_score

X=pd.DataFrame({'Feature 1':x0, 'Feature 2':x1})
y=classes

clf= DecisionTreeClassifier(criterion="entropy")
clf.fit(X,y)

X_test=pd.DataFrame({'Feature 1':[10,9,11],'Feature 2':[7,9,5]})
y_test=pd.DataFrame({'Class':[1,0,1]})

test_data=pd.concat([X_test,y_test], axis=1)
print('Test Data \n')
print(test_data)

y_prediction=clf.predict(X_test)
prediction=pd.DataFrame({'Predicted_Class':y_prediction})
prediction=pd.concat([test_data,prediction],axis=1)
print('\n')
print('Result \n')
print(prediction)
print('\n')
print('Accuracy score:',round(accuracy_score(y_prediction,y_test),2))

plt.figure(figsize=(11,7))
plot_tree(clf, filled=True,

feature_names=['x_0','x_1'],
class_names=['R', 'B'], impurity=True,
)

plt.gca().set_facecolor('#f4f4f4')
plt.gcf().patch.set_facecolor('#f4f4f4')
plt.show()

Test Data

9

Feature 1 Feature 2 Class
0 10 7 1
1 9 9 0
2 11 5 1

Result

Feature 1 Feature 2 Class Predicted_Class
0 10 7 1 1
1 9 9 0 0
2 11 5 1 0

Accuracy score: 0.67

entropy = 0.0
samples = 2
value = [0, 2]

class = B

entropy = 0.0
samples = 1
value = [1, 0]

class = R

entropy = 0.0
samples = 2
value = [2, 0]

class = R

x1 <= 8.5
entropy = 0.918

samples = 3
value = [1, 2]

class = B

entropy = 0.0
samples = 3
value = [0, 3]

class = B

x1 <= 6.5
entropy = 0.971

samples = 5
value = [3, 2]

class = R

x1 <= 4.0
entropy = 0.954

samples = 8
value = [3, 5]

class = B

entropy = 0.0
samples = 5
value = [0, 5]

class = B

x1 <= 9.5
entropy = 0.779

samples = 13
value = [3, 10]

class = B

entropy = 0.0
samples = 2
value = [2, 0]

class = R

entropy = 0.0
samples = 5
value = [5, 0]

class = R

True
x0 <= 10.0

entropy = 0.918
samples = 15
value = [5, 10]

class = B

 False

x0 <= 3.5
entropy = 1.0
samples = 20

value = [10, 10]
class = R

10

Discussion on Decision Tree

Being a simple algorithm, it has both pros and cons. It is robust to training data and the
training data can contain missing values. However, it is a greedy algorithm, a problem-solving
technique that chooses the best option in the current situation, without considering the overall
outcome. It also face the overfitting issue.

Reference

Decision Tree Classification Clearly Explained by Normalized Nerd

Share on

�

ï

�

You may also like

11

https://www.youtube.com/watch?v=ZVR2Way4nwQ

	Decision Tree
	The Core Idea Behind Decision Trees
	Building a Decision Tree
	Implementation of Decision Tree: Scikit-learn
	Discussion on Decision Tree
	Reference

