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Introduction

Logistic Regression is a popular classification algorithm used for binary and multi-class classi-
fication problems. Unlike Linear Regression, which is used for regression problems, Logistic
Regression is used to predict categorical outcomes. In binary classification, the output is either
0 or 1, and the relationship between the input features and the outcome is modeled using a
logistic function (also called the sigmoid function).

What is Logistic Regression?

Logistic Regression is a type of regression analysis used when the dependent variable is
categorical. In binary logistic regression, the output can have only two possible outcomes (e.g.,
0 or 1, pass or fail, spam or not spam). Logistic Regression works by modeling the probability
of an event occurring based on one or more input features. It estimates the probability that a



given input belongs to a particular category (0 or 1) using the logistic function (sigmoid
function).

The Sigmoid Function

The sigmoid function maps any real-valued number to a value between 0 and 1, making it ideal
for modeling probabilities.

The sigmoid function is given by the formula:

Where:

e 2 is the input to the sigmoid function (in logistic regression, z = x - 6)
e ¢ is the base of the natural logarithm

The output of the sigmoid function is interpreted as the probability P(y = 1|X).

Logistic Regression Model
In Logistic Regression, the hypothesis is modeled as:
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Where:
e X is the input feature vector

e 0 is the parameter vector (weights)

Cost Function for Logistic Regression

Unlike Linear Regression, which uses the Mean Squared Error (MSE) as the cost function,
Logistic Regression uses log loss or binary cross-entropy as the cost function, as the output
is binary (0 or 1).

So, basically we model probability from the given data. In other words, we can write
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Where, 6, x € R¥! and d is the dimension of the data. For single data vector x the binary
cross-entropy function can be written as

1(8) = ypo(x) + (1 — y)(1 — pp(x))

Since we have n of those i.i.d data vectors therefore, we can write

L(6) = [ (po(ox) + (1 — ) (1 — po(x0)))
=1

Since our goal is to minimize the loss, we need to perform derivatives of the loss function.
Therefore, to change from the product form to addition form we take negative log of the above
expression

00) = —log L(9) = — "y log po(x) + (1 — y:) log (1 — pa(x))
=1

For the ease of calculation, let’s rewrite the above equation in terms of m and b where

meRd:(Hl,Qg,--- ,Hd)T and b € R.

£0) = — En: Yilog pm,p(x) + (1 — yi) log (1 — prmp(x))
=1

Where:

e n is the number of training examples

e m is the number of features
o 3y is the true label of the i*" example
e b is the bias for the i** example



Gradient Descent

To minimize the cost function and find the optimal values for 8, we use gradient descent.
We start from the last form of the loss function and convert this to a form that is easy to take
the partial dervivatives.
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Now we again use the beautiful features of the sigmoid function
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Finally, we are ready to take the partial derivatives of the loss function with respect to m and
b,
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Using this gradient, we update the parameter vector 6 iteratively:

9j+1 = 9j - OZVK(QJ)
Where:

e « is the learning rate
o V/(0;) is the partial derivative of the cost function with respect to §; and
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Python Code Implementation from Scratch

Here’s how to implement Logistic Regression from scratch in Python. We will use two different
forms for our class

import numpy as np

class LogisticRegressionl:

def __init__(self, learning rate = 0.1, n_iterations = 1000):
won
Hyper Parameters
- learning rate: learning rate; float; default 0.01
- n_itearations: number of iterations; int; default 1000
Model Parameters
- weights: weights of the features; float or int
- bias: bias of the model; float or int
wn
self.learning _rate = learning_rate
self.n_iterations = n_iterations
self.weights = None
self.bias = None

def _sigmoid(self, x):
return 1/(1+np.exp(-x))

def fit(self, X,y):
n_sample = number of samples in the data set: the value n
n_features = number of features or the dimension of the data set: the value d
n_sample,n_features = X.shape
self .weights = np.zeros(n_features)
self.bias = 0

for _ in range(self.n_iterations):
linear = np.dot(X, self.weights) + self.bias
pred = self._sigmoid(linear)

dw
db

(1/n_sample)* np.dot(X.T, (pred-y))
(1/n_sample) * np.sum(pred-y)

self.weights = self.weights - self.learning_rate * dw
self .bias = self.bias - self.learning_rate * db



def predict(self, X):
linear = np.dot(X, self.weights) + self.bias
predicted_y = self._sigmoid(linear)
class_of_y = [0 if y<=0.5 else 1 for y in predicted_y]
return class_of_y

Now let’s use this using the scikit-learn breast cancer data set.

import pandas as pd

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

b_cancer = load_breast_cancer()

X, y = b_cancer.data, b_cancer.target

X_train, X_test, y_train, y_test = train_test_split(X,y, random_state=123, stratify=y, test_
clfl = LogisticRegressionl(learning rate=0.01)

clfl.fit(X_train, y_train)

predicted_y = clfl.predict(X_test)
print(np.round(accuracy_score(predicted_y, y_test),2))

0.91

Now lets compare this with the standard scikit-learn library
from sklearn.linear_model import LogisticRegression
clf2 = LogisticRegression()

clf2.fit(X_train, y_train)

predicted_y = clf2.predict(X_test)
print (np.round(accuracy_score(predicted_y, y_test),2))

0.96
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