Skip to content

Grid Search

GridSearch

Base class for performing grid search over Langevin Monte Carlo hyperparameters.

Parameters

gammas : list List of gamma (friction) values to try. etas : list List of eta (step size) values to try. xis : list List of xi values (used only for third-order methods). If None, fourth-order is assumed. N : int Number of MCMC samples to draw for each parameter configuration. Required. seed : int Random seed for reproducibility. show_progress : bool, default=True Whether to show a progress bar during the grid search.

Source code in holmc/utils/gridsearch.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class GridSearch:
    """
    Base class for performing grid search over Langevin Monte Carlo
    hyperparameters.

    Parameters
    ----------
    gammas : list
        List of gamma (friction) values to try.
    etas : list
        List of eta (step size) values to try.
    xis : list
        List of xi values (used only for third-order methods). If None,
        fourth-order is assumed.
    N : int
        Number of MCMC samples to draw for each parameter configuration.
        Required.
    seed : int
        Random seed for reproducibility.
    show_progress : bool, default=True
        Whether to show a progress bar during the grid search.
    """

    def __init__(
        self,
        gammas: list = None,
        etas: list = None,
        xis: list = None,
        N: int = None,
        seed: int = None,
        show_progress: bool = True,
    ):
        self.gammas = gammas
        self.etas = etas
        self.xis = xis
        self.N = N
        self.seed = seed
        self.show_progress = show_progress
        if seed is not None:
            np.random.seed(seed)
        if N is None:
            raise ValueError("N must be specified for grid search.")

GridSearchClassification

Bases: GridSearch

Grid search implementation for Bayesian logistic regression using HoLMC samplers.

This class evaluates sampler performance over a grid of parameters using predictive accuracy based on samples averaged over time.

Methods

run(X, y, lamb): Executes the grid search and returns a DataFrame sorted by maximum accuracy. compute_accuracy(X, y, samples): Computes predictive accuracy from the sample sequence.

Source code in holmc/utils/gridsearch.py
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
class GridSearchClassification(GridSearch):
    """
    Grid search implementation for Bayesian logistic regression using HoLMC
    samplers.

    This class evaluates sampler performance over a grid of parameters using
    predictive accuracy
    based on samples averaged over time.

    Methods
    -------
    run(X, y, lamb):
        Executes the grid search and returns a DataFrame sorted by maximum
        accuracy.
    compute_accuracy(X, y, samples):
        Computes predictive accuracy from the sample sequence.
    """

    def compute_accuracy(self, X, y, samples):
        """
        Compute classification accuracy over cumulative average of sampled
        parameters.

        Parameters
        ----------
        X : np.ndarray
            Feature matrix of shape (n_samples, n_features).
        y : np.ndarray
            Binary target labels (0 or 1) of shape (n_samples,).
        samples : np.ndarray
            Array of sampled parameter vectors of shape (n_samples, n_features)

        Returns
        -------
        np.ndarray
            Array of accuracy scores as function of the sample index.
        """
        n = samples.shape[0]
        accuracies = []

        for i in range(1, n + 1):
            avg_theta = np.mean(samples[:i], axis=0)
            logits = X @ avg_theta
            probs = sigmoid(logits)
            y_pred = (probs >= 0.5).astype(int)
            acc = accuracy(y, y_pred)
            accuracies.append(acc)

        return np.array(accuracies)

    def run(self, X: np.ndarray, y: np.ndarray, lamb: float = None):
        """
        Run the grid search for classification.

        Parameters
        ----------
        X : np.ndarray
            Feature matrix of shape (n_samples, n_features).
        y : np.ndarray
            Binary target labels (0 or 1) of shape (n_samples,).
        lamb : float
            Regularization (prior precision) parameter. Required.

        Returns
        -------
        pd.DataFrame
            DataFrame containing the grid search results sorted by maximum
            accuracy.
        """
        if lamb is None:
            raise ValueError("lamb must be specified for grid search.")

        results = []
        N = self.N

        is_third_order = self.xis is not None

        for eta in tqdm(self.etas, disable=not self.show_progress, desc="Eta"):
            for gamma in self.gammas:
                xi_list = self.xis if is_third_order else [None]
                for xi in xi_list:
                    try:
                        if is_third_order:
                            params = O3Params(eta=eta, gamma=gamma, xi=xi)
                            sampler = HoLMCSamplerO3Classification(
                                params=params,
                                N=N,
                                seed=self.seed,
                                show_progress=False,
                            )
                        else:
                            params = O4Params(eta=eta, gamma=gamma)
                            sampler = HoLMCSamplerO4Classification(
                                params=params,
                                N=N,
                                seed=self.seed,
                                show_progress=False,
                            )
                        samples = sampler.sample(X, y, lamb)
                        ac = self.compute_accuracy(X, y, samples)
                        max_acc = np.nanmax(ac)

                        result = {
                            "gamma": gamma,
                            "eta": eta,
                            "MaxAcc": max_acc,
                        }
                        if is_third_order:
                            result["xi"] = xi
                        results.append(result)
                    except Exception:
                        result = {"gamma": gamma, "eta": eta, "MaxAcc": np.nan}
                        if is_third_order:
                            result["xi"] = xi
                        results.append(result)

        self.results_df = pd.DataFrame(results).sort_values(
            "MaxAcc", ascending=False
        )
        return self.results_df

compute_accuracy(X, y, samples)

Compute classification accuracy over cumulative average of sampled parameters.

Parameters

X : np.ndarray Feature matrix of shape (n_samples, n_features). y : np.ndarray Binary target labels (0 or 1) of shape (n_samples,). samples : np.ndarray Array of sampled parameter vectors of shape (n_samples, n_features)

Returns

np.ndarray Array of accuracy scores as function of the sample index.

Source code in holmc/utils/gridsearch.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def compute_accuracy(self, X, y, samples):
    """
    Compute classification accuracy over cumulative average of sampled
    parameters.

    Parameters
    ----------
    X : np.ndarray
        Feature matrix of shape (n_samples, n_features).
    y : np.ndarray
        Binary target labels (0 or 1) of shape (n_samples,).
    samples : np.ndarray
        Array of sampled parameter vectors of shape (n_samples, n_features)

    Returns
    -------
    np.ndarray
        Array of accuracy scores as function of the sample index.
    """
    n = samples.shape[0]
    accuracies = []

    for i in range(1, n + 1):
        avg_theta = np.mean(samples[:i], axis=0)
        logits = X @ avg_theta
        probs = sigmoid(logits)
        y_pred = (probs >= 0.5).astype(int)
        acc = accuracy(y, y_pred)
        accuracies.append(acc)

    return np.array(accuracies)

run(X, y, lamb=None)

Run the grid search for classification.

Parameters

X : np.ndarray Feature matrix of shape (n_samples, n_features). y : np.ndarray Binary target labels (0 or 1) of shape (n_samples,). lamb : float Regularization (prior precision) parameter. Required.

Returns

pd.DataFrame DataFrame containing the grid search results sorted by maximum accuracy.

Source code in holmc/utils/gridsearch.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def run(self, X: np.ndarray, y: np.ndarray, lamb: float = None):
    """
    Run the grid search for classification.

    Parameters
    ----------
    X : np.ndarray
        Feature matrix of shape (n_samples, n_features).
    y : np.ndarray
        Binary target labels (0 or 1) of shape (n_samples,).
    lamb : float
        Regularization (prior precision) parameter. Required.

    Returns
    -------
    pd.DataFrame
        DataFrame containing the grid search results sorted by maximum
        accuracy.
    """
    if lamb is None:
        raise ValueError("lamb must be specified for grid search.")

    results = []
    N = self.N

    is_third_order = self.xis is not None

    for eta in tqdm(self.etas, disable=not self.show_progress, desc="Eta"):
        for gamma in self.gammas:
            xi_list = self.xis if is_third_order else [None]
            for xi in xi_list:
                try:
                    if is_third_order:
                        params = O3Params(eta=eta, gamma=gamma, xi=xi)
                        sampler = HoLMCSamplerO3Classification(
                            params=params,
                            N=N,
                            seed=self.seed,
                            show_progress=False,
                        )
                    else:
                        params = O4Params(eta=eta, gamma=gamma)
                        sampler = HoLMCSamplerO4Classification(
                            params=params,
                            N=N,
                            seed=self.seed,
                            show_progress=False,
                        )
                    samples = sampler.sample(X, y, lamb)
                    ac = self.compute_accuracy(X, y, samples)
                    max_acc = np.nanmax(ac)

                    result = {
                        "gamma": gamma,
                        "eta": eta,
                        "MaxAcc": max_acc,
                    }
                    if is_third_order:
                        result["xi"] = xi
                    results.append(result)
                except Exception:
                    result = {"gamma": gamma, "eta": eta, "MaxAcc": np.nan}
                    if is_third_order:
                        result["xi"] = xi
                    results.append(result)

    self.results_df = pd.DataFrame(results).sort_values(
        "MaxAcc", ascending=False
    )
    return self.results_df

GridSearchRegression

Bases: GridSearch

Grid search implementation for Bayesian linear regression using HoLMC samplers.

This class runs over a grid of (eta, gamma, xi) parameters and evaluates performance using the Wasserstein-2 distance between the sampled distribution and the target posterior.

Methods

run(X, y, lamb): Executes the grid search and returns a DataFrame of results sorted by W2 distance.

Source code in holmc/utils/gridsearch.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
class GridSearchRegression(GridSearch):
    """
    Grid search implementation for Bayesian linear regression using HoLMC
    samplers.

    This class runs over a grid of (eta, gamma, xi) parameters and evaluates
    performance
    using the Wasserstein-2 distance between the sampled distribution and the
    target posterior.

    Methods
    -------
    run(X, y, lamb):
        Executes the grid search and returns a DataFrame of results sorted by
        W2 distance.
    """

    def run(self, X: np.ndarray, y: np.ndarray, lamb: float = None):
        """
        Run the grid search for regression.

        Parameters
        ----------
        X : np.ndarray
            Design matrix of shape (n_samples, n_features).
        y : np.ndarray
            Response vector of shape (n_samples,) or (n_samples, 1).
        lamb : float
            Regularization (prior precision) parameter. Required.

        Returns
        -------
        pd.DataFrame
            DataFrame containing the grid search results sorted by minimum
            Wasserstein-2 distance.
        """
        if lamb is None:
            raise ValueError("lamb must be specified for grid search.")

        if X is None or y is None:
            raise ValueError("X and y must be provided for grid search.")

        N = self.N

        results = []

        is_third_order = self.xis is not None

        for eta in tqdm(self.etas, disable=not self.show_progress, desc="Eta"):
            for gamma in self.gammas:
                xi_list = self.xis if is_third_order else [None]
                for xi in xi_list:
                    try:
                        if is_third_order:
                            params = O3Params(eta=eta, gamma=gamma, xi=xi)
                            sampler = HoLMCSamplerO3Regression(
                                params=params,
                                N=N,
                                seed=self.seed,
                                show_progress=False,
                            )
                        else:
                            params = O4Params(eta=eta, gamma=gamma)
                            sampler = HoLMCSamplerO4Regression(
                                params=params,
                                N=N,
                                seed=self.seed,
                                show_progress=False,
                            )
                        samples = sampler.sample(X, y, lamb)
                        metric = Wasserstein2Distance(X=X, y=y)
                        dist = metric.w2distance(samples)
                        min_dist = np.nanmin(dist)

                        result = {
                            "gamma": gamma,
                            "eta": eta,
                            "w2dist": min_dist,
                        }
                        if is_third_order:
                            result["xi"] = xi
                        results.append(result)
                    except Exception:
                        result = {"gamma": gamma, "eta": eta, "w2dist": np.nan}
                        if is_third_order:
                            result["xi"] = xi
                        results.append(result)

        self.results_df = pd.DataFrame(results).sort_values("w2dist")
        return self.results_df

run(X, y, lamb=None)

Run the grid search for regression.

Parameters

X : np.ndarray Design matrix of shape (n_samples, n_features). y : np.ndarray Response vector of shape (n_samples,) or (n_samples, 1). lamb : float Regularization (prior precision) parameter. Required.

Returns

pd.DataFrame DataFrame containing the grid search results sorted by minimum Wasserstein-2 distance.

Source code in holmc/utils/gridsearch.py
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def run(self, X: np.ndarray, y: np.ndarray, lamb: float = None):
    """
    Run the grid search for regression.

    Parameters
    ----------
    X : np.ndarray
        Design matrix of shape (n_samples, n_features).
    y : np.ndarray
        Response vector of shape (n_samples,) or (n_samples, 1).
    lamb : float
        Regularization (prior precision) parameter. Required.

    Returns
    -------
    pd.DataFrame
        DataFrame containing the grid search results sorted by minimum
        Wasserstein-2 distance.
    """
    if lamb is None:
        raise ValueError("lamb must be specified for grid search.")

    if X is None or y is None:
        raise ValueError("X and y must be provided for grid search.")

    N = self.N

    results = []

    is_third_order = self.xis is not None

    for eta in tqdm(self.etas, disable=not self.show_progress, desc="Eta"):
        for gamma in self.gammas:
            xi_list = self.xis if is_third_order else [None]
            for xi in xi_list:
                try:
                    if is_third_order:
                        params = O3Params(eta=eta, gamma=gamma, xi=xi)
                        sampler = HoLMCSamplerO3Regression(
                            params=params,
                            N=N,
                            seed=self.seed,
                            show_progress=False,
                        )
                    else:
                        params = O4Params(eta=eta, gamma=gamma)
                        sampler = HoLMCSamplerO4Regression(
                            params=params,
                            N=N,
                            seed=self.seed,
                            show_progress=False,
                        )
                    samples = sampler.sample(X, y, lamb)
                    metric = Wasserstein2Distance(X=X, y=y)
                    dist = metric.w2distance(samples)
                    min_dist = np.nanmin(dist)

                    result = {
                        "gamma": gamma,
                        "eta": eta,
                        "w2dist": min_dist,
                    }
                    if is_third_order:
                        result["xi"] = xi
                    results.append(result)
                except Exception:
                    result = {"gamma": gamma, "eta": eta, "w2dist": np.nan}
                    if is_third_order:
                        result["xi"] = xi
                    results.append(result)

    self.results_df = pd.DataFrame(results).sort_values("w2dist")
    return self.results_df