Grid Search
GridSearch
¶
Base class for performing grid search over Langevin Monte Carlo hyperparameters.
Parameters¶
gammas : list List of gamma (friction) values to try. etas : list List of eta (step size) values to try. xis : list List of xi values (used only for third-order methods). If None, fourth-order is assumed. N : int Number of MCMC samples to draw for each parameter configuration. Required. seed : int Random seed for reproducibility. show_progress : bool, default=True Whether to show a progress bar during the grid search.
Source code in holmc/utils/gridsearch.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
GridSearchClassification
¶
Bases: GridSearch
Grid search implementation for Bayesian logistic regression using HoLMC samplers.
This class evaluates sampler performance over a grid of parameters using predictive accuracy based on samples averaged over time.
Methods¶
run(X, y, lamb): Executes the grid search and returns a DataFrame sorted by maximum accuracy. compute_accuracy(X, y, samples): Computes predictive accuracy from the sample sequence.
Source code in holmc/utils/gridsearch.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
compute_accuracy(X, y, samples)
¶
Compute classification accuracy over cumulative average of sampled parameters.
Parameters¶
X : np.ndarray Feature matrix of shape (n_samples, n_features). y : np.ndarray Binary target labels (0 or 1) of shape (n_samples,). samples : np.ndarray Array of sampled parameter vectors of shape (n_samples, n_features)
Returns¶
np.ndarray Array of accuracy scores as function of the sample index.
Source code in holmc/utils/gridsearch.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|
run(X, y, lamb=None)
¶
Run the grid search for classification.
Parameters¶
X : np.ndarray Feature matrix of shape (n_samples, n_features). y : np.ndarray Binary target labels (0 or 1) of shape (n_samples,). lamb : float Regularization (prior precision) parameter. Required.
Returns¶
pd.DataFrame DataFrame containing the grid search results sorted by maximum accuracy.
Source code in holmc/utils/gridsearch.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
GridSearchRegression
¶
Bases: GridSearch
Grid search implementation for Bayesian linear regression using HoLMC samplers.
This class runs over a grid of (eta, gamma, xi) parameters and evaluates performance using the Wasserstein-2 distance between the sampled distribution and the target posterior.
Methods¶
run(X, y, lamb): Executes the grid search and returns a DataFrame of results sorted by W2 distance.
Source code in holmc/utils/gridsearch.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
run(X, y, lamb=None)
¶
Run the grid search for regression.
Parameters¶
X : np.ndarray Design matrix of shape (n_samples, n_features). y : np.ndarray Response vector of shape (n_samples,) or (n_samples, 1). lamb : float Regularization (prior precision) parameter. Required.
Returns¶
pd.DataFrame DataFrame containing the grid search results sorted by minimum Wasserstein-2 distance.
Source code in holmc/utils/gridsearch.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|