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Introduction

Introduction

Enhance the application decision process for auto loans.

Given Data Overview:

e Training data around 21,000 records, test data around 5400 records
e Both set contains 43 columns including the target variable
'bad_ flag’

Build predictive models:

e Logistic Regression
e Decision Tree Classifier
e Random Forest Classifier

Model Selection and Implementation:
o We use classification report, ROC-AUC sroce, Fl-score, and
visualization
e Implement final model to answer business questions
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Data Analysis Missing Data

Data Analysis: Missing values

e Both training and test data contains significant amount of missing
data

Heatmap plot of Training Data Heatmap plot of Test Data

Figure 1: Missing values in train and test data

o Nine features have over 50% missing data.
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Data Analy:

Data Analysis: Missing values

e Both training and test data contains significant amount of missing
data

Heatmap plot of Training Data Heatmap plot of Test Data
=: =

Figure 1: Missing values in train and test data

o Nine features have over 50% missing data.
e Frequency based columns: Imputed by mode
e Continuous columns: Imputed by median
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Explo

Data Analysis: Exploratory Data Analysis (EDA)

e Target variable is highly imbalanced: 95.51% Poor Credit, 4.49%
Good Credit
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Figure 2: Bi-variate analysis of target and categorical features
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o Five frequency-based features

Worst Status on Auto Losn and Cret lag

st vear and Credit Flag

Figure 3: Bi-variate analysis of the frequency based features

o Continuous features such as BTC ratios, credit utilization rates,
FICO scores were found highly impactful.
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Modeling

Model Overview

e Models Evaluated:

o Logistic Regression: Linear, interpretable.
e Decision Tree: Rule-based, prone to overfitting.
e Random Forest: Robust ensemble method.

o Evaluation Metrics:

e ROC-AUC
e F1-Score
e Classification Report
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Modeling

Model Performance (Without Resampling)

e Random Forest achieved the best performance:
o ROC-AUC: 0.8078 (Mean), 0.0093 (Std).

o Classification Results (Test Data):

Metric Class 0.0 | Class 1.0
Precision | 0.961553 | 0.268750
Recall 0.977032 | 0.177686
F1-Score | 0.969231 | 0.213930
Accuracy 0.94078

Table 1: Classification Report (Test Data)
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Modeling

Model Performance (With Resampling)

e Applied SMOTE for class imbalance.
@ Results showed overfitting:

e High accuracy on training data.
e Poor generalization to test data.

ROC-AUC curve on train data ROC-AUC curve on test data

Figure 4: ROC-AUC Curve (With Resampling)
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Final Model and its Predictability

Final Model Selection

e Final Model: Random Forest Classifier.
o Key Insights:

e Strong predictive performance.
e ROC-AUC on unseen data: 0.94.

e Explainability:
e Used LIME for individual prediction explanations.
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Final Model and its Predictability

Gender Equality Analysis

e Approval Rates:
o Female: 2.20%.
o Male: 2.68%.
o Undefined: 5.02%.

Approval Rates by Gender
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Figure 5: Approval Rates by Gender
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Final Model and its Predictability

Racial Equality Analysis

e Approval Rates:
o Black: 2.33%.
o Hispanic: 2.69%.
o White: 2.59%.

Approval Rates by Race
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Final Model and its Predictability

Explain a Decision

Prediction probabilities Good Credit Poor Credit Feature Value
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Figure 7: LIME Explanation for an Individual Prediction
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Conclusion

Conclusion

o Random Forest demonstrated high accuracy and interpretability.
e Challenges:

o Class imbalance.
e Overfitting with resampling.

e Future Work:

o Advanced models (e.g., XGBoost, SHAP for explainability).
e Improved data cleaning and feature engineering.
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Questions

Thank you!
Questions?
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