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Abstract: Cryptocurrencies are currently traded worldwide, with hundreds of different currencies in
existence and even more on the way. This study implements some statistical and machine learning
approaches for cryptocurrency investments. First, we implement GJR-GARCH over the GARCH
model to estimate the volatility of ten popular cryptocurrencies based on market capitalization:
Bitcoin, Bitcoin Cash, Bitcoin SV, Chainlink, EOS, Ethereum, Litecoin, TETHER, Tezos, and XRP.
Then, we use Monte Carlo simulations to generate the conditional variance of the cryptocurrencies
using the GJR-GARCH model, and calculate the value at risk (VaR) of the simulations. We also
estimate the tail-risk using VaR backtesting. Finally, we use an artificial neural network (ANN) for
predicting the prices of the ten cryptocurrencies. The graphical analysis and mean square errors
(MSEs) from the ANN models confirmed that the predicted prices are close to the market prices. For
some cryptocurrencies, the ANN models perform better than traditional ARIMA models.

Keywords: artificial neural network; cryptocurrency; GJR-GARCH; NIG; Monte Carlo simulation;
value at risk backtesting

1. Introduction

A cryptocurrency is a digital currency and is used as a medium of exchange. This
currency is a unique combination of three different attributes: anonymity, freedom from cen-
tral authority, and provision of protection against double spending attacks; Lánskỳ (2016).
Cryptocurrency, also known as crypto, is one of the fastest-growing asset classes, with a
total market capitalization of $761.46 billion as of December 2020.1 The underlying reason
is that the market for cryptocurrency offers hedging properties when included with tra-
ditional asset classes such as stocks and bonds; Wang et al. (2019). The hedging benefit
is more pronounced in developed markets; Wang et al. (2019). Moreover, some prior
studies extensively studied only Bitcoin for hedging and diversification benefits, such as
the fact that Bitcoin is appealing for diversification purposes Shahzad et al. (2021); Bitcoin
is a strong hedge and safe-haven against some categorical economic policy uncertainty
metrics, including fiscal policy, taxes, national security, and trade policy under bullish
market conditions Mokni et al. (2021); Bitcoin is a good hedging instrument during high
uncertainty periods Mokni et al. (2020); Bitcoin can provide diversification benefits while
optimizing the risk and return with a new approach Hatemi-J et al. (2019); Bitcoin is a good
hedge against both newspaper and internet-search-based measures of economic uncertainty
Bouri and Gupta (2019). It is a digital or virtual currency with no regulatory council and,
to date, without any government interventions, leading to a risk factor for cryptocurrency
investment. Moreover, there are no indices to measure the volatility of cryptocurrency
return. Therefore, it is essential to understand the risk–return properties of cryptocurrency.
Besides, it is necessary to predict future prices for investors. The main objective of this
study is to offer an appropriate model for estimating volatility and predicting the price
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of cryptocurrency as the risk–return tradeoff of cryptocurrency is distinct. It can only be
explained by cryptocurrency market-specific factors Liu and Tsyvinski (2018).

The prior literature has widely studied volatility and price prediction using different
models; however, these studies mostly include asset classes other than cryptocurrency.
Borri (2019) examines the volatility of four cryptocurrencies using GARCH models. How-
ever, one of the key caveats of estimating volatility for cryptocurrency is to account for
fat-tails. As a result, we apply the GJR-GARCH model against the GARCH model in our
study. Besides, there has been limited research in price prediction for cryptocurrency.
Therefore, we apply artificial neural networks (ANNs) for predicting the price of the cryp-
tocurrency.

In this study, we assess risk and forecast price using ANNs for ten cryptocurren-
cies selected based on market capitalization. Our sample period is from 11 November
2018 to 31 December 2020. Initially, we identify an appropriate time series model, GJR-
GARCH Glosten et al. (1993), to forecast volatility and estimate VaR, which allows us to
identify more accurate risk than the GARCH Bollerslev (1986) model. The existing liter-
ature provides evidence that cryptocurrencies suffer from extreme tail-risk Borri (2019);
Feng et al. (2018). Using the GJR-GARCH model at a 1% confidence level, we confirm
that cryptocurrencies suffer from tail-risk and show that Bitcoin SV and Chainlink have
the highest tail-risks of −19.78% and −15.57%, respectively. In contrast, TETHER suffers
from the least tail-risk among our selected cryptocurrencies. Value at risk (VaR) backtest-
ing Danielsson (2011) is a statistical risk managing tool that helps investors to monitor
and quantify the risk level associated with an investment portfolio. We perform VaR
Nieppola (2009) backtesting to examine the accuracy of the VaR models. Then, we ap-
ply ANNs McCulloch and Pitts (1943), which are considered one of the most promising
methods for time series prediction, to predict price in a complex environment. Most prior
studies implement ANNs in predicting stock prices Hassan et al. (2007); White (1988). Some
other studies implement this new technique in predicting stock indices Yao et al. (1999)
and the credit rating process Hájek (2011). We show that ANNs can forecast next-day
cryptocurrency prices with higher precision.

In this paper, we try to answer three essential questions for cryptocurrency investment:
(1) Does GJR-GARCH perform better in estimating volatility than the GARCH model? (2)
Does VaR Backtesting show any interesting results for top cryptocurrencies? (3) Does an
ANN perform better than traditional ARIMA models for predicting prices of cryptocurren-
cies? This study contributes to the growing literature of cryptocurrencies as follows. First,
the study contributes to tail-risk literature by providing a well-established methodology,
the GJR-GARCH model. Second, we estimate confidence intervals for risk and returns
and compare them with simulated data by Markov Chain Monte Carlo. Third, value at
risk backtesting is used to measure the accuracy of the value at risk calculations, which
determines how well the mentioned cryptocurrency investment strategy would perform
using historical data. Finally, this study contributes to the literature of ANNs by showing
the application in predicting prices of cryptocurrencies.

2. Literature Review

There has been a sufficient amount of research regarding measuring risk in finance.
The GARCH model has been widely implemented to estimate volatility in different types
of security markets. Moschini and Myers (2002) developed a multivariate generalized
ARCH (GARCH) parameterization for the optimal futures hedge ratio using corn prices.
Alberg et al. (2008) implemented different GARCH models in the Tel Aviv stock exchange
to estimate conditional variance. De Goeij and Marquering (2004) found strong evidence of
conditional heteroskedasticity in the covariance between stock and bond market returns
using the GARCH model. However, the GARCH model may not be appropriate if the asset
returns suffer from fat-tail risk. In such cases, the GJR-GARCH model is more suited as
it accounts for fat-tail distribution better than the GARCH model. Therefore, many other
studies implement the GJR-GARCH models. Ma et al. (2020) examined whether gold can be
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used as a safe haven for stocks. They used the GJR-GARCH model to estimate the extreme
tail risk. Moreover, Maciel (2013) applied a similar methodology in the stock market. As
cryptocurrencies suffer from fat-tail risk, we prefer to implement the GJR-GARCH model
to accurately estimate the volatility of cryptocurrencies.

However, price predictions were mainly used for the stock market. The first significant
study of neural network models used IBM’s daily stock returns for prediction White (1988).
After that, significant research was performed to check neural networks’ accuracy of pre-
diction to forecast the stock market. Hassan et al. (2007) proposed a fusion model by
combining the hidden Markov model (HMM), an artificial neural network (ANN), and
genetic algorithms (GA) to forecast financial market behavior. Adebiyi et al. (2014) com-
pared the forecasting performance by ARIMA and artificial neural networks for stock data.
Some other studies used ANNs to predict the stock market index Moghaddam et al. (2016);
Yao et al. (1999). Other than predicting stock prices, some studies implemented ANNs in
different fields of finance. Previous studies have shown that ANNs exhibit better perfor-
mance in bankruptcy prediction Quah and Srinivasan (1999) and the credit rating process
Hájek (2011). Previous studies have applied different methodologies such as ordinary least
squares (OLS) regression, support vector regression (SVR), and least absolute shrinkage
and selection operator (LASSO) techniques from the field of machine learning to predict
the price of cryptocurrency Plakandaras et al. (2021). Therefore, we present ANNs as an
alternative mechanism for predicting cryptocurrency prices. Motivated by prior studies, we
implement the ANN models in a relatively new financial market, which is cryptocurrency.

3. Methodology

In this section, we will explain data selections and methods that have been used
to analyze the data. First, we describe the data source, how the cryptocurrencies were
selected, and some properties of the data. Second, we describe the ARIMA process and
its subsection describes robust model selection. Third, we present the GJR-GARCH and
GARCH for volatility, and perform the back testing of the models. Finally, we describe
how to use the supervised machine learning approach, the ANN model, for predicting
cryptocurrency prices.

3.1. Data Selections

We collected daily prices, dollar volume, and market capitalization for 2500 cryp-
tocurrencies from coingecko.com (accessed on 31 January 2021). Then, we sorted all the
cryptocurrencies based on their market capitalization. Finally, we chose the top ten cryp-
tocurrencies from the sorted list. The top ten selected cryptocurrencies were Bitcoin, Bitcoin
Cash, Bitcoin SV, Chainlink, EOS, Ethereum, Litecoin, TETHER, Tezos, and XRP. The
combined market capitalization of our selected cryptocurrencies covers around 80 percent
of the coingecko-based market. Our sample period ran from 11 November 2018 to 31
December 2020 with a total of 781 trading days. Since the starting dates of our selected
cryptocurrencies were not same, we chose a starting date of 11 November 2018, which
was the first trading date of the latest cryptocurrency of our observed cryptocurrencies.
Typically, we have 252 business days per year, however a cryptocurrency investor can
invest and exercise every single day of the year; that is 365 days a year.

3.1.1. Exploratory Data Analysis

Exploratory data analysis has been applied to summarize the main characteristics of
cryptocurrencies. We plotted prices and a table of summary statistics to estimate the quick
description of the data.

In Figure 1, prices are scaled as follows: Bitcoin is divided by 10; XRP is multiplied by
1000; Chainlink, EOS, TETHER and Tezos are multiplied by 100; Litecoin is multiplied by
10. Data are daily prices of the cryptocurrencies from 11 November 2018 to 31 December
2020. Figure 1 demonstrates a clear surge in the prices of the cryptocurrencies. In this

https://www.coingecko.com/en
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Figure, we see that most of the cryptocurrencies have either an upward or a downward
trend except for Chainlink, TETHER, and XRP, which seem less volatile.

Figure 1. This figure plots daily prices for ten cryptocurrencies from 11 November 2018 to 31 December 2020. We scaled the
prices of cryptocurrency to fit in one plot.

Table 1 presents descriptive statistics for ten cryptocurrencies where results have
been calculated based on the daily log returns of the assets. The mean daily log returns
of the cryptocurrencies are between −0.24% and 0.30%. From the sample period, Chain-
link observed the highest return whereas Bitcoin Cash observed the lowest return. In
terms of volatility as measured by standard deviation, Bitcoin SV was the most volatile
cryptocurrency whereas TETHER was the least volatile cryptocurrency.

Table 1. The table presents the summary statistics of the daily return of the ten cryptocurrencies. The
sample period covers 11 November 2018 to 31 December 2020.

Cryptocurrency Mean(%) Std(%) N Min(%) Max(%)

Bitcoin 0.19 3.83 781 −43.37 15.93
Bitcoin Cash −0.06 6.10 781 −57.99 38.99
Bitcoin SV 0.09 8.53 781 −64.31 88.66
Chainlink 0.40 6.86 781 −66.08 47.61

EOS −0.09 5.39 781 −48.87 22.90
Ethereum 0.16 4.99 781 −56.31 18.12
Litecoin 0.12 5.25 781 −47.14 26.20
TETHER 0.00 0.32 781 −1.97 2.50

Tezos 0.05 6.11 781 −62.54 27.49
XRP −0.11 5.09 781 −54.95 34.01

We use the heatmap in Figure 2 to understand the correlation between the ten cryp-
tocurrencies, which assists us in determining risk in further analysis. The heatmap shows
that TETHER is uncorrelated with the other nine cryptocurrencies of our sample.
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Figure 2. This figure shows the correlation among ten cryptocurrencies. Log prices of all cryptocur-
rencies have been used to calculate the correlation. Data are daily prices from coingeco.com. The
sample period covers 11 November 2018 to 31 December 2020.

3.1.2. Higher Moments, Correlations, and Value at Risk

For each cryptocurrency, degrees of asymmetry in a probability distribution have
been found through skewness. Because the normal distribution shows zero skewness, we
use skewness to find out whether each probability distribution is normal or not. If the daily
prices are skewed, a normally distributed model will always underestimate skewness risk
in its predictions. The more skewed the price, the less accurate the financial model will be.
Mathematically, we calculate the skewness as:

τ =
µ3

σ3 =
E[(x− µ)3]

E[(x− µ)2]3/2 (1)

Moreover, we find that kurtosis measures extreme values in either tail of a fitted
distribution. This has been used to see whether the distributions with large kurtosis exhibit
tail data exceeding the tails of the normal distribution. Kurtosis risks can be used to
see the occasional extreme returns. Mathematically, kurtosis has been evaluated by the
following formula:

κ =
µ4

σ4 =
E[(x− µ)4]

E[(x− µ)2]2
(2)

where
x = cryptocurrency returns,
µ = mean,
σ = standard deviation.

We have found excess kurtosis because the distribution of each crypto outcome has
many instances of outlier results (we also checked Q-Q plots), which causes fat tails on
the bell-shaped distribution curve. Log prices of all cryptocurrencies have been used to
calculate the correlation. We use the following formula:

R =
∑(xi − x̄)(yi − ȳ)√

∑(xi − x̄)2 ∑(yi − ȳ)2
(3)

where
R = correlation coefficient,
xi = values of the x-variable in a sample,
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x̄ = mean of the values of the x-variable,
yi = values of the y-variable in a sample,
ȳ = mean of the values of the y-variable.

Value at risk, VaR, is applied on the cryptocurrency returns to see the specific losses at
the left tail of the return distribution at a certain significance level. The following idea has
been used to find VaR:

VaR = [Expected Weighted Return of the Portfolio − (z-score of the confidence interval
× standard deviation of the portfolio)] × portfolio value

3.2. ARIMA Model for Cryptocurrency Prediction

For the time series data analysis, stationarity is a very important factor. However,
most of the real-world data, especially the market data (stock, cryptocurrencies, and other
derivatives), are not stationary. To make the data stationary, we take the difference of the
data. A non-stationary series Xt will follow an Autoregressive Integrated Moving Average
ARIMA(p,d,q) process if Yt follows an ARMA(p,q) process where Yt is the dth difference of
Xt; that is, Yt = ∇dXt. A generalized ARIMA(p,d,q) model can be written as(

1− φpBp − · · · − φ2B2 − φ1B
)
(1− B)dYt = (θqBq + · · ·+ θ2B2 + θ1B + 1)et (4)

where B is the backshift operator that transforms a variable into its lagged version. For
example, BYt = Yt−1, B2Yt = Yt−2, · · · , BqYt = Yt−q. where p, q are the autoregression
and moving average orders, respectively, which are determined from the analysis of the
autocorrelation of the series.

φ and θ are the autoregression and moving average parameters, respectively, which
we estimate from the model based on the values of p, d, and q.

Robust Model Selection

To identify the appropriate model for this study, we initially look at the AIC
Akaike (1974) to choose which ARIMA(p, d, q) is the best fit for our prediction. This
strategy has been followed for all ten cryptocurrencies. The Box–Jenkins Box et al. (2015)
method has been applied for cryptocurrency returns to fit the ARIMA model, and we test
normality by Q−Q plots and find non-normal behavior and use NIG distribution instead
(see Figure 3). To consider the leverage effect, we use GJR-GARCH under NIG distribution
instead of general GARCH models.

In Figure 3, we only show why hyperbolic distribution and assymetric-GARCH mod-
elling are necessary. We present results for Bitcoin only in Figure 3 to avoid redundancy.
For all other nine cryptocurrencies, same results have been found. The Empirical and theo-
retical densities have been shown where heavy tail elements have been found. Moreover,
empirical and theoretical CDFs also show similar results. We also show Q-Q and P-P plots,
which confirm our assumption of there being non-normality.
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Figure 3. Comparison of Empirical and Theoretical densities.

We fit some ARIMA(p, d, q) models. Then, we compared the performance of each
model in forecasting the future values. To fit these above models, we needed to make
sure that the return was a stationary series. We used the Augmented Dickey Fuller (ADF)
Enders (2008) test to check the stationarity of the models. The null hypothesis was “the
series is not stationary”.

From Table 2 we see that the p-value from the ADF test of the original series is greater
than 0.05 except for TETHER and XRP, which are 0.01 and 0.013, respectively. So, at the 5%
level of significance we do not have sufficient evidence against the null hypothesis that the
original series is non-stationary. The null hypothesis for the KPSS test is that the data are
stationary. For this test, we do not want to reject the null hypothesis. Except TETHER, all
other cryptocurrencies show p-values less than or equal to 0.01 in KPSS tests.

Table 2. Tests of stationarity characteristics of each cryptocurrency.

Cryptocurrencies ADF Test
Statistics ADF p-Values Stationary Test KPSS Level

Bitcoin 2.215 0.990 Not stationary 6.0433
Bitcoin Cash −2.647 0.305 Not stationary 0.7578
Bitcoin SV −2.827 0.228 Not stationary 4.4799
Chainlink −2.325 0.441 Not stationary 8.2319

EOS −2.297 0.453 Not stationary 2.7370
Ethereum 0.820 0.990 Not stationary 6.0329
Litecoin −0.769 0.964 Not stationary 0.9214
TETHER −5.514 0.010 Stationary 0.1507

Tezos −3.054 0.132 Not stationary 8.1873
XRP −3.910 0.013 Stationary 2.0961

As a result, we took the first and second difference depending on the data and ran
different models. The best ARIMA(p, d, q) model was chosen based on criteria that the
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lower AIC (Akaike’s Information Criteria) the better model as shown in the Table 3 below.
However, some values of the parameters p, d, q give smaller AIC values but those are found
overfitting. For example, ARIMA(1, 1, 2) has the most negative AIC value for Bitcoin but
it was found that ARIMA(0, 2, 1) makes the best prediction. Similarly, all overfitted cases
were excluded and the best models are shown in bold fonts (see Table 3).

Table 3. Choosing the best ARIMA model based on AIC values (robust model).

ARIMA(p,d,q) ARIMA(0,2,1) ARIMA(1,1,2) ARIMA(0,1,1) ARIMA(0,2,4)

Bitcoin −2021.25 −2032.82 −2031.95 −2020.21
Bitcoin Cash −1602.01 −1623.92 −1624.76 −1609.34
Bitcoin SV −1300.44 −1323.13 −1318.15 −1304.74
Chainlink −1440.84 −1454.68 −1454.35 −1442.16

EOS −1685.25 −1707.25 −1705.49 −1692.90
Ethereum −1723.45 −1743.80 −1738.80 −1728.94
Litecoin −1697.86 −1711.93 −1712.14 −1700.21
TETHER −4881.19 −5248.66 −5250.03 −5227.21

Tezos −1512.13 −1539.72 −1534.68 −1524.31
XRP −1628.77 −1644.95 −1641.18 −1629.69

Next, we wanted to check the ARCH effect in our data. As a result, we ran an ARCH-
LM test. In Table 4 we show the results of the ARCH-LM test. The results confirm the
existence of heteroskedasticity in our data. The null hypothesis in this test was that there
is no ARCH effect, while an alternative effect is that there is an ARCH effect. Although
we show both chi-squared values and p-values, we made the decision to reject the null
hypothesis based on p-values. Therefore, ARCH effects were found in our data. The ARCH
model defines the variance of the current error term or innovation as a function of the
actual sizes of the error terms from prior time periods.

Table 4. ARCH-LM test.

Cryptocurrency χ2 p-Value

Bitcoin 770.82 2.2× 10−16

Bitcoin Cash 716.47 2.2× 10−16

Bitcoin SV 511.07 2.2× 10−16

Chainlink 739.29 2.2× 10−16

EOS 712.23 2.2× 10−16

Ethereum 761.36 2.2× 10−16

Litecoin 741.24 2.2× 10−16

TETHER 137.97 2.2× 10−16

Tezos 724.35 2.2× 10−16

XRP 681.12 2.2× 10−16

3.3. Volatility Modeling with GJR-GARCH

Let rt denote the log return of a portfolio between periods t− 1 and t, and Ft denote
the information filtration generated by these terms. We have

rt = µt + et where, et ∼ σtεt

E[Ft−1] = µt

Var(Ft−1) = σ2
t

σ2
t = α0 +

k

∑
m=1

αme2
t−m +

l

∑
n=1

βnσ2
t−n

(5)



J. Risk Financial Manag. 2021, 14, 421 9 of 22

where εt are independent and identically distributed random variables with NIG distribu-
tion. Parameter constraints are

α0 > 0, αm ≥ 0, βn ≥ 0

and,
k

∑
m=1

α2
m +

l

∑
n=1

β2
n < 1

(6)

The unforeseen series can be estimated by conditional variance models. Engle (1982)
discovered the Autoregressive Conditional Heteroskedasticity (ARCH) model to forecast
the variance of a time series. The ARCH model assumes that, the same as the error terms
in a regular AR process, the variance of the error term is dependent on previous error
term variances.

σ2
t = α0 +

k

∑
m=1

αme2
t−m

Bollerslev (1986) extended the ARCH model and developed the Generalized Au-
toregressive Conditional Heteroskedasticity (GARCH) model. GARCH(p, q) with three
parameters can describe complex volatility structures and it is sufficient for most applica-
tions. We can forecast future volatility by using the GARCH(p, q) model below:

σ̂2
t+τ = σ2 + (α1 + β1)

τ(σ2
t + σ2) (7)

where σ2 = α0
1−α1−α2

is the unconditional variance of innovations et.
Note that α1 + β1 < 1 as τ → ∞; we also achieve σ̂2

t+τ → σ2. So, prediction of
volatility goes with time asymptotically to the unconditional variance. Returns of an asset
have positive excess kurtosis. Thus, we consider a fat tail,

σ2
t = α0 +

k

∑
m=1

αme2
t−m +

l

∑
n=1

βnσ2
t−n +

h

∑
p=1

γpe2
t−k It−k

where

It−k =

1 if e2
t−k > 0

0 otherwise

γp > 0 produces an extra volatility for negative innovation that adjusts the asymmetric
impact on volatility.

The GJR-GARCH model is slightly different than the original ARCH or GARCH model.
We consider GJR− GARCH(p, q) with

k

∑
m=1

α2
m +

l

∑
n=1

β2
n +

1
2

h

∑
p=1

γ2
p < 1

with,

α0 > 0, αm ≥ 0, βn ≥ 0, αm + γp ≥ 0

σ̂2
t+τ = α0 +

α1 + γ1

2
+ β1σ2

t (τ − 1) (8)

where the leverage order is automatically considered equal to order 1, and all parame-
ter constraints are quite similar to the GARCH(p, q) model. Barndorff-Nielsen (1977)
proposed NIG distribution, a hyperbolic distribution, which captures more data than
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a Gaussian distribution. The probability density function of random variable G can be
defined as

fNIG(G; α, κ, µ, δ) =
αδ

π
eδ
√

α2−β2+β(x−µ)C1[αq(x)]

where

q(x) =
(
(x− µ)2 + δ2

)
α > 0 evaluates the shape, δ > 0 is the scaling parameter, µ ∈ (−∞, ∞) and 0 ≤ |κ| ≤ α
evaluates the skewness. C1(x) is the modified Bessel function of the 2nd kind with index
one. We consider all innovation under NIG.

3.3.1. Confidence Bound by Markov Chain Monte Carlo Simulation

Furthermore, we consider an independent random drawn from a specific proba-
bilistic model with realization of the entire sample path of specific length K, y1, y2, · · · , yn.
For a large number of simulated draws, we have P sample paths with each having length
K. We use Monte Carlo simulation Hertz (1964) to generate the next conditional variance
by applying GJR-GARCH. As the accuracy of the Monte Carlo method depends on a finite
number of simulations, thus it has some errors, which can be controlled by increasing
the number of paths M. We estimate the probability of the future event using the sample
proportion of the event occurrence across M simulations. Here,

p̂ =
C
M

(9)

where C is the number of time events occurring in M simulated sample paths. Finally, we
estimate Monte Carlo simulated path error.

SE =

√
p̂(1− p̂)

M

We plotted the average and the 97.5% and 2.5% percentiles of the simulated paths and
compared the simulation statistics to the original data.

3.3.2. Calculation of Sharpe Ratio

We use the Sharpe ratio for calculating the risk-adjusted returns. It is used to
evaluate a portfolio’s past performance (ex-post) where actual returns are used in the
formula. Sharpe ratio measures the performance of an investment, which is excess return
per unit of risk (measured by standard deviation) of that investment. Higher Sharpe ratios
suggest better performance. The Sharpe ratio, Sp, is calculated as follows:

Sp =
rc − r f

σc
(10)

where rc and σc represent the return and standard deviation of cryptocurrencies and r f
presents the risk-free rates. It explains whether a cryptocurrency portfolio’s excess returns
are due to some smart investment decisions or a result of too much risk. Note that a
negative Sharpe ratio does not present any useful meaning. For daily cryptocurrency
investors, Sharpe ratio is a nice tool with which to see future returns, but it is not the
only one.

3.3.3. Value at Risk Backtesting

Next, we examine how our ex-ante risk forecast performs in the ex-post basis. To
monitor and quantify various level of risks associated with cryptocurrency investment, the
VaR statistical risk management technique has been applied where backtesting measures
the accuracy of the value at risk calculations. Using backtesting we determine how well a
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crypto investment strategy would perform using historical data for each cryptocurrency.
We obtain VaR at a 1% level, which is VaR0.01(t + 1). If X is the random variable indicating
loss under given parameters 0 < α < 1 then we can write that the α−VaR of X is

VaRα(X) := −{c : P(X ≤ c) ≥ α, } (11)

where VaRα(X) is the minimum loss that will not be exceeded with probability α. The
smallest loss is in the (1− α)× 100% worst cases. Thus, our backtesting is based on our
assumed distribution at a (1− α) confidence level in VaR. We also performed Kupiec’s
tests and Christoffersen’s tests for all ten cryptocurrencies, however we have not included
these in our paper.

3.4. Supervised Machine Learning Approach: Artificial Neural Network

In ANN, some inputs are provided to an artificial neuron, and weight is associated
with each input. Weight increases the steepness of the activation function. This means that
weight decides how fast the activation function will trigger whereas bias β is used to delay
the triggering of the activation function. Fundamentally, the mechanism has three layers:
input, hidden, and output layers. Each layer may contain many nodes or neurons and the
hidden part may also contain several layers. However, for the time series analysis and
forecasting, the single-layer feed-forward network is the most widely used used model
structure Zhang et al. (1998). For a typical neuron, if the inputs are x1, x2, · · · , xn then the
synaptic weights to be applied to them are denoted as wpi for i = 1, 2, · · · , n. The following
equation represents the idea:

Yt = W0 +
q

∑
j=1

Wj.g

(
W0, j +

p

∑
i=1

Wi,j.Xt−i

)
+ εt (12)

where Wi,j and Wj for i = 1, 2, · · · , p, j = 1, 2, · · · , q are known as connection weights
and W0 is the initial bias. Here Yt is the return rt. The weight shows the effectiveness
of a particular input. The higher the weight of an input, the more impact there is on
the network.

Network has been created and trained in open loop form as shown in Figure 4. In
fact, open loop (single-step) is more efficient than closed loop (multi-step) training data
sets. Open loop allows us to supply the network with correct past outputs as we train it to
produce the correct current outputs.

Figure 4. Architecture of artificial neural network.

The performance of the ANN Crick (1989) was evaluated using the determination of
coefficient R2 and the mean square error (MSE) of the output of the model. MSE indicates
the average squared difference between the predicted values estimated from a model and
the actual values. The MSE is calculated as follows based on cryptocurrency return.

MSE =
1
N

N

∑
t=1

(rt − r̂t)
2 (13)
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where rt and r̂t are actual and predicted prices of the cryptocurrencies. We chose the
Bayesian regularization training algorithm as used in MacKay and Mac Kay (2003) and
Selvamuthu et al. (2019). Training stops according to adaptive weight minimization (regu-
larization). To examine whether our model was performing well or not, we checked mean
squared error (MSE).

4. Results and Discussion

In this section, we present the results of the GJR-GARCH and GARCH models for
estimating the volatilities of the ten selected cryptocurrencies, simulated cryptocurrency
volatility, and predicted cryptocurrency prices.

4.1. GJR-GARCH and GARCH Models for Cryptocurrency Volatilities

First, we present descriptive statistics of the ten cryptocurrencies in Table 5. Sharpe
ratio is the average return earned in excess of the risk-free rate per unit of volatility or
total risk. Intuitively, it measures the excess return earned per unit of risk. In our sample,
Chainlink has the highest Sharpe ratio of 0.046, whereas Bitcoin has the second-highest
Sharpe ratio of 0.029 in our sample. Some cryptocurrencies have negative Sharpe ratios,
which signify that their average return is less than the risk-free rate in our sample.

Table 5 shows that cryptocurrency returns exhibit fat-tail distributions. Generally, prior
literature has used the GARCH model over the autoregressive conditional heteroscedastic
(ARCH) model. However, to control for asymmetric responses of volatility to innovation
fluctuations, we used the GJR-GARCH model. From Table 5, we observe all positive values
of excess kurtosis, which means all of the returns have leptokurtic distributions. This refers
to a heavy degree of risks with extreme return values. Moreover, except Bitcoin SV and
TETHER, all the other cryptocurrencies show skewness with negative values, which are
compensated with high future returns for higher volatility. These two higher moments
play with investors’ sentiments.

Table 5. Higher moments and value at risk (q = 0.01).

Cryptocurrency Skewness Kurtosis VaRq Sharpe Ratio

Bitcoin −1.78 22.87 −0.087 0.029
Bitcoin Cash −0.68 16.53 −0.143 −0.022
Bitcoin SV 1.43 29.69 −0.198 0.001
Chainlink −0.43 14.87 −0.156 0.046

EOS −1.00 11.02 −0.126 −0.032
Ethereum −1.93 22.06 −0.114 0.016
Litecoin −0.62 10.43 −0.121 0.007
TETHER 0.59 13.71 −0.007 −0.252

Tezos −1.16 15.49 −0.142 −0.004
XRP −1.31 28.89 −0.119 −0.038

Figure 5 depicts the comparison between the GARCH(p,q) and GJR-GARCH(p,q) mod-
els to estimate volatility using daily data. The top left panel of this Figure shows the
time-series and the right panel shows the scatter plot of the volatility estimate. The middle
panel shows a comparison in volatility forecasting. The bottom panel shows the news
impact curve. We used the daily data for Bitcoin and we found similar results for all others.
Therefore, to avoid redundancy and to show volatility model selection, we only show
results for a single cryptocurrency. We also use the lowest AIC value for determining
the best p and q for a robust volatility GJR-GARCH(p,q) model for each cryptocurrency.
Furthermore, there is a valid reason for choosing GJR-GARCH over the GARCH model:
it is empirically found that negative cryptocurrency returns at time t− 1 have a stronger
impact on the volatility at time t than positive cryptocurrency returns. This asymmetric
process is known as the leverage effect. The increment of the risk is realized to come from
the increased leverage induced by the negative returns of cryptos Glosten et al. (1993).
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Figure 5. Comparison between GARCH(p,q) and GJR-GARCH(p,q) models.

In Figure 6, we forecast the volatility for the ten cryptocurrencies. It shows daily data
where the blue line indicates predicted volatility. If we examine the historical return series,
it does not show conditional mean offset and thus exhibits volatility clustering.
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Figure 6. Volatility prediction by conditional variance (vs. absolute value of returns) using GJR-
GARCH model.

However, we initially forecast the volatility of Bitcoin using both GARCH and GJR-
GARCH in Figure 5 and found that GJR-GARCH provides the better estimate. That is why
we implemented the GJR-GARCH(p,q) model to forecast the return and volatility for our
selected cryptocurrencies. In Figure 6, we forecast the conditional variance (vs. absolute
value of returns) for all ten cryptocurrencies.

4.2. Monte Carlo Simulations of the Cryptocurrencies’ Volatility Using GJR-GARCH Model

Next, we simulated the conditional variance of the cryptocurrency’s returns from a
fully specified GJR-GARCH model based on historical data. In Figure 7, we plotted the
average and the 97.5% and 2.5% percentiles of the simulated paths and compared the
simulation statistics to the original data for each cryptocurrency. The red band indicates the
confidence bound, and all of our selected cryptocurrencies are embedded in the simulated
Monte Carlo paths. We followed the GJR-GARCH(p,q) model based on a 1% confidence
level and daily frequency to estimate VaR. We have presented our results both in Table 5
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and Figure 7. Our results show that Bitcoin, Bitcoin Cash, Etherium, and Litecoin suffer the
most from tail-risk whereas TETHER has the least tail-risk.

Figure 7. The average and the 97.5% and 2.5% percentiles of the simulated paths for 10 cryptocurrencies.

In Figure 8, the jagged red line running across the bottom of the plot indicates the
portfolio’s (negative) one-day 99% value-at-risk. For any instance of a cryptocurrency
falling below that line, there will occur an exceedance risk. This would predict a 99%
value-at-risk measure to experience approximately very few exceedances in under our
horizon. We observe that Bitcoin, Bitcoin Cash, EOS, Ethereum, and Litecoin are highly
risky assets, because these have many exceedance of jagged lines. Referring to Figure 8,
Bitcoin has at least four exceedances of jagged lines. Thus, it supports the hypothesis that
Bitcoin is one of the highly volatile cryptocurrencies.
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Figure 8. Value at risk backtesting for daily portfolio of top ten cryptocurrencies.

4.3. ARIMA and ANN for Forecasting Cryptocurrencies’ Prices

Figure 9 presents a window plot of the predicted price of each cryptocurrency with
their actual prices. From close observation we see that ARIMA models also give higher
accuracy for the next-cryptocurrency price prediction.
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Figure 9. Predicted prices of the cryptocurrencies by the ARIMA model.

We use ANN models for forecasting the future price of ten cryptocurrencies. However,
we choose to show the complete process of forecasting future prices using ANN for only
Chainlink. After training, the network may be converted to closed loop form. We choose
daily price data of Chainlink randomly and divide into three different category named
training set (70%), testing set (15%) and Validation set (15%).

In Figure 10, we find that we don’t have any overfit of the model. In Figure 10a, we
evaluate regression fit by the value of regression coefficient. Figure 10b allows us to check
on the training progress of our Neural Network. The Figure 10b shows MSE and epochs of
the Neural Network for training and test set. To observe whether our ANN is training well,
we look for training set’s Loss and Accuracy and whether they converge as the number of
epochs increases. As our Loss and Accuracy from both sets are diverging from each other,
there is no sign of overfitting from our ANN model. It shows a good fit for Chainlink. We
also observe similar output for all other nine cryptocurrencies.

In our case, we show it for 9 epochs in Figure 10c. All types of data sets are approxi-
mately overlapping at 3 epochs. Therefore, we do not have to change our ANN structure.
Next, we tested our model against actual data to see how well it performed. We found that
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for all of the ten cryptocurrencies, our ANN model could predict the price, which means it
is performing quite well. Here Figure 10, R is actually R2; the coefficient of the model.

Figure 10. ANN model diagnostics. Validation Performance plot are displayed by the regression
plots. (a) Training data set, (b) Testing data set, (c) Overall data set, and (d) Epoachs vs. MSE.

Table 6 has been given for the MSE of each model. In the studied supervised machine
learning technique, we evaluated the model by using MSE. For some mentioned cryp-
tocurrencies, we obtained less MSE for ANN predictions, and for other cryptocurrencies,
we see ARIMA perform better. As we know, minimal or least MSE is considered the best
fit. Therefore, from this study, it is not possible to say that the ANN is the best model
but one can implement the ANN as an alternative procedure. For Chainlink and all other
nine cryptocurrencies, K-fold validations are compared using the mean square error (MSE)
metric. We observe that the MSE of the fitted model is less than cross-validation MSE for
all ten cryptocurrencies. For our example, the cross-validation MSE of Chainlink is 0.53
approximately, which is obviously less than the MSE of ARIMA and ANN prediction.
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Table 6. Mean square error.

Cryptocurrencies ARIMA Prediction ANN Prediction

Bitcoin 174,304.1 183,090.2
Bitcoin Cash 142.6201 143.4331
Bitcoin SV 60.34515 60.29052
Chainlink 0.5256038 0.5184568

EOS 0.01581617 0.01552488
Ethereum 279.0574 288.4151
LiteCoin 11.12067 11.33181
TETHER 4.18× 10−6 5.09× 10−6

Tezos 0.01715067 0.01733191
XRP 0.000741516 0.00071525

The window plot in Figure 11 presents only a one-month prediction output. All of the
models are showing good output. In most of the cases, the ANN is performing better than
ARIMA.

Figure 11. Comparison between market prices versus ARIMA and ANN predicted prices.

Overall, in this paper we have contributed two separate studies for cryptocurrencies.
One is for volatility/risk and another is for return. An investor may think about these
two properties of the financial market. Cheikh et al. (2020) investigated the presence of
asymmetric volatility dynamics in Bitcoin, Ethereum, Ripple, and Litecoin using threshold
GARCH models. We have extended this group of literature. We compared GARCH and
GJR-GARCH volatility estimates for estimating volatility considering the normal inverse
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Gaussian (NIG) distribution. Then, we showed that to estimate volatility for cryptocur-
rencies, the GJR-GARCH model under NIG is better. Similarly, for predicting prices of
cryptocurrencies, we applied an ANN and showed the comparison with ARIMA instead
of ordinary least squares (OLS) regression, support vector regression (SVR), and the least
absolute shrinkage and selection operator (LASSO) of Bouri et al. (2021). Our findings have
implications for money managers. Money managers can implement an ANN for predicting
the prices of cryptocurrencies.

5. Conclusions

We conducted a standard learning approach for cryptocurrency investment by
fitting two different time-series models, the GARCH(p,q) and the GJR-GARCH(p,q) models,
in predicting cryptocurrency risks. We concluded that GJR-GARCH(p,q) provides a better
estimate for volatility of cryptocurrency returns than GARCH(p,q). We also estimated
the tail-risk of cryptocurrencies using VaR, and backtesting provides a comparison of the
Monte Carlo simulated VaR measure to the actual volatility of cryptocurrency returns.
We showed that cryptocurrencies suffer from excessive tail-risk. Finally, we presented a
comparison of ARIMA and ANN for forecasting cryptocurrency prices with market values.
Based on the results, the ANN can be considered an alternative method to the ARIMA
model for predicting cryptocurrency prices. From our analysis we observe that Bitcoin,
Bitcoin Cash, EOS, Ethereum, and Litecoin are highly risky cryptocurrencies. Although the
paper focused on comparing some common financial models in evaluating cryptocurrency
risk and predicting prices, it is among the few papers in the literature that have studied
the cryptocurrency market. Therefore, the paper would make a good contribution to
cryptocurrency risk management. This paper mainly analyzes some top cryptocurrencies
for estimating risk and predicting prices by comparing two models for each objective.
GJR-GARCH under NIG and ANN for cryptocurrency price prediction can be alternative
powerful techniques. Future research may extend the analysis by fitting more models for
several cryptocurrencies to estimate risk and predict prices. More specifically, we want
to introduce more statistical machine learning models in cryptocurrency price prediction.
We did not use any machine learning techniques for volatility prediction or portfolio
optimization, such as CVaR, mean variance, or Black Litterman portfolio optimization in
the case of cryptocurrency, to optimize asset allocation. In future we will contribute in this
sector. Since machine learning techniques are data driven, thus they will help portfolio
managers to understand the future risk of investors’ assets more profoundly.
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