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Introduction

Correlation and regression are two fundamental concepts in statistics, often used to study
relationships between variables. While correlation measures the strength and direction of a
linear relationship between two variables, regression goes further by modeling the relationship
to predict or explain one variable based on another. This blog explores the mathematical
underpinnings of both concepts, illustrating their significance in data analysis.

Correlation Analysis

To better explain, we will use the following hypothetical stock data of 10 companies with stock
price and their corresponding proportion in the portfolio.
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import pandas as pd

df = pd.DataFrame({
'Stock': ['Apple', 'Citi', 'MS', 'WF', 'GS', 'Google', 'Amazon', 'Tesla', 'Toyota', 'SPY'],
'StockPrice': [2.11, 2.42, 2.52, 3.21, 3.62, 3.86, 4.13, 4.27, 4.51, 5.01],
'Portfolio': [2.12, 2.16, 2.51, 2.65, 3.62, 3.15, 4.32, 3.31, 4.18, 4.45]

})

df.set_index('Stock', inplace=True)

df.T

Stock Apple Citi MS WF GS Google Amazon Tesla Toyota SPY
StockPrice 2.11 2.42 2.52 3.21 3.62 3.86 4.13 4.27 4.51 5.01
Portfolio 2.12 2.16 2.51 2.65 3.62 3.15 4.32 3.31 4.18 4.45

The scatterplot of the data looks like this

from mywebstyle import plot_style
plot_style('#f4f4f4')
import matplotlib.pyplot as plt
plt.scatter(df.StockPrice, df.Portfolio, color='red')
plt.xlabel('Stock Price')
plt.ylabel('Portfolio')
plt.show()

2



2.0 2.5 3.0 3.5 4.0 4.5 5.0
Stock Price

2.5

3.0

3.5

4.0

4.5

Po
rtf

ol
io

We can see from the graph that there appears to be a linear relationship between the 𝑥 and 𝑦
values in this case. To find the relationship mathematically we define the followings

𝑆𝑥𝑥 = ∑(𝑥𝑖 − ̄𝑥)2 = ∑(𝑥2
𝑖 − 2𝑥𝑖 ̄𝑥 + ̄𝑥2)

= ∑ 𝑥2
𝑖 − 2 ̄𝑥 ∑ 𝑥𝑖 + ∑ ̄𝑥2 = ∑ 𝑥2

𝑖 − 2 ̄𝑥𝑛 ̄𝑥 + 𝑛 ̄𝑥2 = ∑ 𝑥2
𝑖 − 𝑛 ̄𝑥2

Similarly,

𝑆𝑦𝑦 = ∑(𝑦𝑖 − ̄𝑦)2 = ∑ 𝑦2
𝑖 − 𝑛 ̄𝑦2

𝑆𝑥𝑦 = ∑(𝑥𝑖 − ̄𝑥)2 ∑(𝑦𝑖 − ̄𝑦)2 = ∑ 𝑥𝑖𝑦𝑖 − 𝑛 ̄𝑥𝑦

The sample correlation coefficient 𝑟 is then given as

𝑟 = 𝑆𝑥𝑦
√𝑆𝑥𝑥𝑆𝑦𝑦

= ∑ 𝑥2
𝑖 − 𝑛 ̄𝑥2

√(∑ 𝑥2
𝑖 − 𝑛 ̄𝑥2) (∑ 𝑦2

𝑖 − 𝑛 ̄𝑦2)

You may have seen a different formula to calculate this quantity which often looks a bit
different

𝜌 = 𝐶𝑜𝑟𝑟(𝑋, 𝑌 ) = 𝐶𝑜𝑣(𝑋, 𝑌 )
√𝑣𝑎𝑟(𝑋)𝑣𝑎𝑟(𝑌 )
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The sample correlation coefficient, 𝑟, is an estimator of the population correlation coefficient,
𝜌, in the same way as 𝑋̄ is an estimator of 𝜇 or 𝑆2 is an estimator of 𝜎2 . Now the question
is what does this 𝑟 values mean?

Value Meaning
𝑟 = 1 The two variables move together in the same direction in a

perfect linear relationship.
0 < 𝑟 < 1 The two variables tend to move together in the same direction

but there is NOT a direct relationship.
𝑟 = 0 The two variables can move in either direction and show no

linear relationship.
−1 < 𝑟 < 0 The two variables tend to move together in opposite directions

but there is not a direct relationship.
𝑟 = −1 The two variables move together in opposite directions in a

perfect linear relationship.

Let’s calculate the correlation of our stock data.

import math
x = df.StockPrice.values
y = df.Portfolio.values

n = len(x)

x_sum, y_sum =0,0
s_xx, s_yy, s_xy = 0,0,0
for i in range(n):

x_sum += x[i]
s_xx += x[i]**2
y_sum += y[i]
s_yy += y[i]**2
s_xy += x[i]*y[i]

s_xx = s_xx - (x_sum)**2/n
s_yy = s_yy - (y_sum)**2/n
s_xy = s_xy - (x_sum * y_sum)/n

r = s_xy/math.sqrt(s_xx * s_yy)

# Print with formatted labels
print(f"Sum x: {x_sum:.2f}")
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print(f"Sum y: {y_sum:.2f}")
print(f"S��: {s_xx:.2f}")
print(f"S��: {s_yy:.2f}")
print(f"S��: {s_xy:.2f}")
print(' ')
print(f"r : {r:.2f}")

Sum x: 35.66
Sum y: 32.47
S��: 8.53
S��: 6.97
S��: 7.13

r : 0.92

Bivariate Analysis

The joint probability density function for 𝑋 and 𝑌 in the bivariate normal distribution is given
by:

𝑓𝑋,𝑌 (𝑥, 𝑦) = 1
2𝜋𝜎𝑋𝜎𝑌 √1 − 𝜌2 exp (− 1

2(1 − 𝜌2) [(𝑥 − 𝜇𝑋)2

𝜎2
𝑋

− 2𝜌(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌 )
𝜎𝑋𝜎𝑌

+ (𝑦 − 𝜇𝑌 )2

𝜎2
𝑌

])

When |𝜌| = 1, the denominator √1 − 𝜌2 in the PDF becomes zero, which might appear
problematic. However, what happens in this case is that the joint distribution degenerates
into a one-dimensional structure (a line) rather than being a two-dimensional probability
density.

To see why, consider the quadratic term inside the exponential:

𝑄 = (𝑥 − 𝜇𝑋)2

𝜎2
𝑋

− 2𝜌(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌 )
𝜎𝑋𝜎𝑌

+ (𝑦 − 𝜇𝑌 )2

𝜎2
𝑌

When |𝜌| = 1, this quadratic expression simplifies, as shown next.

Start with the simplified 𝑄 when |𝜌| = 1:
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𝑄 = (𝑥 − 𝜇𝑋
𝜎𝑋

)
2

− 2𝜌 (𝑥 − 𝜇𝑋
𝜎𝑋

⋅ 𝑦 − 𝜇𝑌
𝜎𝑌

) + (𝑦 − 𝜇𝑌
𝜎𝑌

)
2

= (𝑥 − 𝜇𝑋
𝜎𝑋

− 𝜌𝑦 − 𝜇𝑌
𝜎𝑌

)
2

This is a perfect square because the “cross term” cancels out all independent variability of
𝑋 and 𝑌 when |𝜌| = 1.

For the quadratic term 𝑄 to have any non-zero probability density (since it appears in the
exponent of the PDF), it must be equal to zero:

𝑥 − 𝜇𝑋
𝜎𝑋

− 𝜌𝑦 − 𝜇𝑌
𝜎𝑌

= 0

Rearranging this equation: 𝑦 − 𝜇𝑌
𝜎𝑌

= 𝜌𝑥 − 𝜇𝑋
𝜎𝑋

Multiply through by 𝜎𝑌 :
𝑦 − 𝜇𝑌 = 𝜌 𝜎𝑌

𝜎𝑋
(𝑥 − 𝜇𝑋)

Thus:

𝔼(𝑌 |𝑋 = 𝑥) = 𝜇𝑌 + 𝜌 𝜎𝑌
𝜎𝑋

(𝑥 − 𝜇𝑋)

= 𝜇𝑌 + 𝜌 𝜎𝑌
𝜎𝑋

(𝑥 − 𝜇𝑋)

This is the equation of a straight line in the (𝑋, 𝑌 )-plane. The slope of the line is 𝜌 𝜎𝑌
𝜎𝑋

, and the
line passes through the point (𝜇𝑋, 𝜇𝑌 ). When |𝜌| = 1, all the joint probability mass collapses
onto this line, meaning 𝑋 and 𝑌 are perfectly linearly dependent.

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

# Define the bivariate normal PDF
def bivariate_normal_pdf(x, y, mu_x, mu_y, sigma_x, sigma_y, rho):

z = (
((x - mu_x) ** 2) / sigma_x**2
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- 2 * rho * (x - mu_x) * (y - mu_y) / (sigma_x * sigma_y)
+ ((y - mu_y) ** 2) / sigma_y**2

)
denominator = 2 * np.pi * sigma_x * sigma_y * np.sqrt(1 - rho**2)
return np.exp(-z / (2 * (1 - rho**2))) / denominator

# Parameters
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(x, y)

# Function to plot the bivariate normal distribution and a line for rho = 1 or -1
def plot_bivariate_and_line_side_by_side(rho1, rho2):

fig = plt.figure(figsize=(8, 4))

# Plot for the first rho
ax1 = fig.add_subplot(121, projection='3d')
if abs(rho1) == 1:

# Degenerate case: Straight line
line_x = np.linspace(-3, 3, 100)
line_y = line_x # Since rho = 1 implies y = x (perfect correlation)
ax1.plot(line_x, line_y, np.zeros_like(line_x), label=f'Degenerate Line (� = {rho1})', color='red')

else:
# General bivariate normal distribution
Z = bivariate_normal_pdf(X, Y, 0, 0, 1, 1, rho1)
ax1.plot_surface(X, Y, Z, cmap='viridis', edgecolor='none', alpha=0.8)

ax1.set_title(f'Bivariate Normal (� = {rho1:.2f})')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_zlabel('PDF')

# Plot for the second rho
ax2 = fig.add_subplot(122, projection='3d')
if abs(rho2) == 1:

# Degenerate case: Straight line
line_x = np.linspace(-3, 3, 100)
line_y = line_x # Since rho = 1 implies y = x (perfect correlation)
ax2.plot(line_x, line_y, np.zeros_like(line_x), label=f'Degenerate Line (� = {rho2})', color='red')

else:
# General bivariate normal distribution
Z = bivariate_normal_pdf(X, Y, 0, 0, 1, 1, rho2)
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ax2.plot_surface(X, Y, Z, cmap='viridis', edgecolor='none', alpha=0.8)

ax2.set_title(f'Bivariate Normal (� = {rho2:.2f})')
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
ax2.set_zlabel('PDF')

plt.tight_layout()
plt.show()

# Plot examples side by side
plot_bivariate_and_line_side_by_side(0.5, 1) # Example with rho = 0.5 and rho = 1

3 2 1 0 1 2 3X 3
2

1
0

1
2

3

Y

0.00

0.05

0.10

0.15

PDF

Bivariate Normal (  = 0.50)

3 2 1 0 1 2 3X 3
2

1
0

1
2

3

Y

0.04
0.02

0.00
0.02
0.04

PDF

Bivariate Normal (  = 1.00)

𝑡−Statistic

Under the null hypothesis, where 𝐻0 ∶ 𝜌 = 0, 𝑟
√

𝑛−2√
1−𝑟2 has a 𝑡− distribution with 𝜈 = 𝑛 − 2

degree of freedom.

Fisher’s Transformation of 𝑟

If 𝑊 = 1
2 ln 1+𝑟

1−𝑟 = tanh−1 𝑟, then 𝑊 has approximately a normal distribution with mean
1
2 ln 1+𝜌

1−𝜌 and standard deviation 1√
𝑛−3 .
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For our stock data:

Null Hypothesis 𝐻0: There is no association between stock prices and the portfolio values,
i.e., 𝜌 = 0
Alternative Hypothesis 𝐻1: There is some association between the stock price and portfolio
values, i.e., 𝜌 > 0
If 𝐻0 is true, then the test statistic 𝑟

√
𝑛−2√

1−𝑟2 = 0.92
√

8√
1−0.922 = 6.64 has a 𝑡8 distribution. The

observed value 6.64 is much greater than the critical value of 𝑡8 at 0.5% level which is 3.36.

So, we reject the null hypothesis 𝐻0 at the 0.5% level and conclude that there is a very strong
evidence that 𝜌 > 0.

Alternatively, if we want to use the Fisher’s test:

If 𝐻0 is true, then the test statistic 𝑍𝑟 = tanh−1 𝑟 = tanh−1(0.92) has a 𝑁 (0, 1
7) distribution.

The observed value of this statistic is 1
2 log 1+0.92

1−0.92 = 1.589, which corresponds to a value of
1.589
√ 1

7
= 4.204 on the 𝑁(0, 1) distribution. This is much greater than 3.090, the upper 0.1%

point of the standard normal distribution.

So, we reject 𝐻0 at the 0.1% level and conclude that there is very strong evidence that 𝜌 > 0
ie that there is a positive linear correlation between the stock price and portfolio value.

Regression Analysis

Given a set of points (𝑥𝑖, 𝑦𝑖)𝑛
𝑖=0 for a simple linear regression of the form

𝑌𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜖𝑖; 𝑖 = 1, 2, ⋯ , 𝑛

with 𝜖𝕚 = 0 and 𝑣𝑎𝑟[𝜖𝑖] = 𝜎2.

Model Fitting

We can estimate the parameters from the method of least squares but that’s not the goal in
this case. Fitting the model involves finding 𝛼 and 𝛽 and the estimating the variance 𝜎2.

̂𝑦 = ̂𝛼 + ̂𝛽𝑥

where, ̂𝛽 = 𝑆𝑥𝑦
𝑆𝑥𝑥

and ̂𝛼 = ̄𝑦 − ̂𝛽 ̄𝑥
̂𝛽 is the observed value of a statistic 𝐵̂ whose sampling distribution has the following proper-

ties
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𝔼[𝐵̂] = 𝛽, 𝑣𝑎𝑟[𝐵̂] = 𝜎2

𝑆𝑥𝑥

And the estimate of the error variance

𝜎̂2 = 1
𝑛 − 2 ∑(𝑦𝑖 − ̂𝑦𝑖)2

= 1
𝑛 − 2 (𝑆𝑦𝑦 − 𝑆2

𝑥𝑦
𝑆𝑥𝑥

)

Goodness of fit

To better understand the goodness of fit of the model for the data at hand, we can study the
total variation in the responses, as given by

𝑆𝑦𝑦 = ∑(𝑦𝑖 − ̄𝑦)2

Let’s see how:

𝑦𝑖 − ̄𝑦 = (𝑦𝑖 − ̂𝑦𝑖) + ( ̂𝑦𝑖 − ̄𝑦)
⟹ (𝑦𝑖 − ̄𝑦)2 = ((𝑦𝑖 − ̂𝑦𝑖) + ( ̂𝑦𝑖 − ̄𝑦))2

= (𝑦𝑖 − ̂𝑦𝑖)2 + 2(𝑦𝑖 − ̂𝑦𝑖)( ̂𝑦𝑖 − ̄𝑦) + ( ̂𝑦𝑖 − ̄𝑦)2

= (𝑦𝑖 − ̂𝑦𝑖)2 + 2[𝑦𝑖 − ( ̂𝛼 + ̂𝛽𝑥𝑖)][ ̂𝛼 + ̂𝛽𝑥𝑖 − ( ̂𝛼 + ̂𝛽 ̄𝑥)] + ( ̂𝑦𝑖 − ̄𝑦)2

= (𝑦𝑖 − ̂𝑦𝑖)2 + 2 ̂𝛽 (𝑦𝑖 − ̂𝛼 − ̂𝛽𝑥𝑖) (𝑥𝑖 − ̄𝑥) + ( ̂𝑦𝑖 − ̄𝑦)2

⟹ ∑(𝑦𝑖 − ̄𝑦)2 = ∑(𝑦𝑖 − ̂𝑦𝑖)2 + 2 ̂𝛽 ∑ (𝑦𝑖 − ̂𝛼 − ̂𝛽𝑥𝑖) (𝑥𝑖 − ̄𝑥) + ∑( ̂𝑦𝑖 − ̄𝑦)2

= ∑(𝑦𝑖 − ̂𝑦𝑖)2 + 2 ̂𝛽 [∑ 𝑥𝑖𝑦𝑖 − ̄𝑥 ∑ 𝑦𝑖 − ̂𝛼 ∑ 𝑥𝑖 + 𝑛 ̂𝛼 ̄𝑥 − ̂𝛽 ∑ 𝑥2
𝑖

+ ̂𝛽 ̄𝑥 ∑ 𝑥𝑖] + ∑( ̂𝑦𝑖 − ̄𝑦)2

= ∑(𝑦𝑖 − ̂𝑦𝑖)2 + 2 ̂𝛽 (∑ 𝑥𝑖𝑦𝑖 − 𝑛 ̄𝑥 ̄𝑦) − 2 ̂𝛽2 (∑ 𝑥2
𝑖 − 𝑛 ̄𝑥2) + ∑( ̂𝑦𝑖 − ̄𝑦)2

= ∑(𝑦𝑖 − ̂𝑦𝑖)2 + 2 ̂𝛽𝑆𝑥𝑦 − 2 ̂𝛽2𝑆𝑥𝑥 + ∑( ̂𝑦𝑖 − ̄𝑦)2

= ∑(𝑦𝑖 − ̂𝑦𝑖)2 + 2𝑆𝑥𝑦
𝑆𝑥𝑥

𝑆𝑥𝑦 − 2 (𝑆𝑥𝑦
𝑆𝑥𝑥

)
2

𝑆𝑥𝑥 + ∑( ̂𝑦𝑖 − ̄𝑦)2

⟹ ∑(𝑦𝑖 − ̄𝑦)2 = ∑(𝑦𝑖 − ̂𝑦𝑖)2 + ∑( ̂𝑦𝑖 − ̄𝑦)2

𝑆𝑆𝑇 𝑂𝑇 = 𝑆𝑆𝑅𝐸𝑆 + 𝑆𝑆𝑅𝐸𝐺
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In the case that the data are “close” to a line ( |𝑟| high- a strong linear relationship) the model
fits well, the fitted responses (the values on the fitted line) are close to the observed responses,
and so 𝑆𝑆𝑅𝐸𝐺 is relatively high with 𝑆𝑆𝑅𝐸𝑆 relatively low.

In the case that the data are not “close” to a line ( |𝑟| low - a weak linear relationship) the
model does not fit so well, the fitted responses are not so close to the observed responses, and
so 𝑆𝑆𝑅𝐸𝐺 is relatively low and 𝑆𝑆𝑅𝐸𝑆 relatively high.

The proportion of the total variability of the responses “explained” by a model is called the
coefficient of determination, denoted 𝑅2 .

𝑅2 = 𝑆𝑆𝑅𝐸𝐺
𝑆𝑆𝑇 𝑂𝑇

= 𝑆2
𝑥𝑦

𝑆𝑥𝑥𝑆𝑦𝑦

which takes value between 0 to 1, inclusive. The higher 𝑅2, the better fitting.

For our data, we have:

𝑛 = 10, ∑ 𝑥 = 35.66, ∑ 𝑦 = 32.47
𝑆𝑥𝑥 = 8.53 𝑆𝑦𝑦 = 6.97, 𝑆𝑥𝑦 = 7.13

⟹ ̂𝛽 = 𝑆𝑥𝑦
𝑆𝑥𝑥

= 7.13
8.53 = 0.836

̂𝛼 = ∑ 𝑦
𝑛 − ̂𝛽 ∑ 𝑥

𝑛 = ̄𝑦 − ̂𝛽 ̄𝑥
= 3.247 − 0.836 × 3.566 = 0.266

Therefore, the fitted line would be ̂𝑦 = 0.266 + 0.836𝑥. Now we see the other metrics

𝑆𝑆𝑇 𝑂𝑇 = 6.97

𝑆𝑆𝑅𝐸𝐺 = 𝑆2
𝑦𝑦

𝑆𝑥𝑥
= 6.972

8.53 = 5.695

𝑆𝑆𝑅𝐸𝑆 = 6.97 − 5.695 = 1.275

⟹ 𝜎̂2 = 1.275
8 = 0.1594

𝑅2 = 5.695
6.97 = 0.817
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# Parameters for the line
alpha = 0.266
beta = 0.836

# Line values
line_x = np.linspace(min(df.StockPrice), max(df.StockPrice), 100)
line_y = alpha + beta * line_x

# Plot
plt.scatter(df.StockPrice, df.Portfolio, color='blue', label='Data Points')
plt.plot(line_x, line_y, color='red', label=f'Line: y = {alpha} + {beta}x')

# Labels and title
plt.xlabel('Stock Price')
plt.ylabel('Portfolio')
plt.title('Scatter Plot with Regression Line')
plt.legend()
plt.show()
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Inference on 𝛽

We can rewrite ̂𝛽 = 𝑆𝑥𝑦
𝑆𝑥𝑥

, as

̂𝛽 = 𝑆𝑥𝑦
𝑆𝑥𝑥

= ∑(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
𝑆𝑥𝑥

= ∑(𝑥𝑖 − ̄𝑥)𝑦𝑖 − ̄𝑦 ∑(𝑥𝑖 − ̄𝑥)
𝑆𝑥𝑥

= ∑(𝑥𝑖 − ̄𝑥𝑦𝑖) − ̄𝑦 (∑ 𝑥𝑖 − 𝑛 ̄𝑥)
𝑆𝑥𝑥

= ∑(𝑥𝑖 − ̄𝑥)𝑦𝑖
𝑆𝑥𝑥

Now we recall that 𝐵̂ is the random variable that has ̂𝛽 as its realization. Therefore, 𝐵̂ =
∑(𝑥𝑖−𝑥̄)𝑌𝑖

𝑆𝑥𝑥
. We also recall that 𝔼(𝑌𝑖) = 𝛼 + 𝛽𝑥. Putting these together we obtain,

𝔼[𝐵̂] = 𝔼 [∑(𝑥𝑖 − ̄𝑥)𝑌𝑖
𝑆𝑥𝑥

] = ∑(𝑥𝑖 − ̄𝑥)𝔼[𝑌𝑖]
𝑆𝑥𝑥

= ∑(𝑥𝑖 − ̄𝑥)(𝛼 + 𝛽𝑥𝑖)
𝑆𝑥𝑥

= 𝛼 ∑(𝑥𝑖 − ̄𝑥) + 𝛽 ∑ 𝑥𝑖(𝑥𝑖 − ̄𝑥)
𝑆𝑥𝑥

= 𝛼 (∑ 𝑥𝑖 − 𝑛 ̄𝑥) + 𝛽 (∑ 𝑥2
𝑖 − ̄𝑥 ∑ 𝑥𝑖)

𝑆𝑥𝑥

= 𝛼(𝑛 ̄𝑥 − 𝑛 ̄𝑥) + 𝛽 (∑ 𝑥2
𝑖 − 𝑛 ̄𝑥2)

𝑆𝑥𝑥

= 0 + 𝛽𝑆𝑥𝑥
𝑆𝑥𝑥

= 𝛽

Now the fact that 𝑌 ′
𝑖 s are uncorrelated. Therefore, 𝑣𝑎𝑟 (∑(𝑌𝑖)) = ∑ 𝑣𝑎𝑟(𝑌𝑖) and we have

𝑣𝑎𝑟(𝑌𝑖) = 𝜎2. Therefore,

𝑣𝑎𝑟[𝐵̂] = 𝑣𝑎𝑟 [∑(𝑥𝑖 − ̄𝑥)𝑌𝑖
𝑆𝑥𝑥

] = ∑(𝑥𝑖 − ̄𝑥)2𝑣𝑎𝑟[𝑌𝑖]
𝑆2𝑥𝑥

= ∑(𝑥𝑖 − ̄𝑥)2𝜎2

𝑆2𝑥𝑥
= 𝜎2

𝑆2𝑥𝑥
∑(𝑥𝑖 − ̄𝑥)2 = 𝜎2

𝑆2𝑥𝑥
𝑆𝑥𝑥

= 𝜎2

𝑆𝑥𝑥
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Since 𝔼( ̂𝛽) = 𝛽 and 𝑣𝑎𝑟( ̂𝛽) = 𝜎2
𝑆𝑥𝑥

so

𝑀 =
̂𝛽 − 𝛽

√ 𝜎2
𝑆𝑥𝑥

∼ 𝑁(0, 1)

and the observed variance 𝜎̂2 has the property

𝑁 = (𝑛 − 2)𝜎̂2

𝜎2 ∼ 𝜒2
𝑛−2

Since ̂𝛽 and 𝜎̂2 are independent, it follows that

𝑀
√ 𝑁

𝑛−2

∼ 𝑡𝑛−2

In other words:
̂𝛽 − 𝛽

𝑠𝑒( ̂𝛽)
=

̂𝛽 − 𝛽
√ 𝜎̂2

𝑆𝑥𝑥

∼ 𝑡𝑛−2

Now the big question is what’s the use of this mathematical jargon that we have learned so
far? Let’s use our regression problem on stock data to explain.

𝐻0 ∶ 𝛽 = 0, there is no linear relationship
vs
𝐻1 ∶ 𝛽 > 0, there is a linear relationship

Based on our data we have ̂𝛽 = 0.836 and 𝜎̂2 = 0.1594, and 𝑆𝑥𝑥 = 8.53. Therefore, under 𝐻0,
the test statistic

̂𝛽 − 0
√ 𝜎̂2

𝑆𝑥𝑥

has a 𝑡10−2 or 𝑡8 distribution

But the observed value of this statistic

0.836 − 0
√0.1594/8.53

= 6.1156

which is way higher than the critical value at 5% significance level.
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from scipy.stats import t

# Parameters
df = 8 # Degrees of freedom
alpha = 0.05 # Upper tail probability
t_critical = t.ppf(1 - alpha, df) # Critical t-value at the 95th percentile

# Generate x values for the t-distribution
x = np.linspace(-4, 4, 500)
y = t.pdf(x, df)

# Plot the t-distribution
plt.plot(x, y, label=f't_{df} Distribution', color='blue')
plt.fill_between(x, y, where=(x >= t_critical), color='red', alpha=0.5, label=f'Upper {alpha*100}% Area')

# Annotate the critical t-value on the x-axis
plt.axvline(t_critical, ymin=0.02, ymax=0.30,color='red', linestyle='--', label=f'Critical t-value = {t_critical:.2f}')
plt.text(t_critical, -0.02, f'{t_critical:.2f}', color='red', ha='center', va='top')

# Add a horizontal line at y = 0
plt.axhline(0, color='black', linestyle='-', linewidth=0.8)

# Labels, title, and legend
plt.title(f"t-Distribution with {df} Degrees of Freedom")
plt.xlabel("t")
plt.ylabel("Density")
plt.legend()

# Adjust plot limits

# Show plot
plt.show()
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So, we reject the null hypothesis 𝐻0 at the 5% level and conclude that there is a very strong
evidence that 𝛽 > 0, i.e., the portfolio value is increasing over stock price.

Alternatively, let’s put our analysis in a different approach. We claim that

𝐻0 ∶ 𝛽 = 1, there is a linear relationship
vs
𝐻1 ∶ 𝛽 ≠ 1
In this case,

𝑠𝑒( ̂𝛽) = √ 𝜎̂2

𝑆𝑥𝑥
= √0.1594

8.53 = 0.1367

Therefore, the 95% confidence interval for 𝛽 is

̂𝛽 ± {𝑡0.025,8 × 𝑠𝑒( ̂𝛽)} = 0.836 ± 2.306 × 0.1367 = (0.5207, 1.1512)

The 95% two-sided confidence interval contains the value 1, so the two-sided test conducted
at 5% level results in 𝐻0 being accepted.
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Mean Response and Individual Response

Mean Response

If 𝜇0 is the expected (mean) response for a value 𝑥0 of the predictor variable, that is 𝜇0 =
𝔼[𝑌 |𝑥0] = 𝛼 + 𝛽𝑥0, then 𝜇0 is an unbiased estimator given by

̂𝜇0 = ̂𝛼 + ̂𝛽𝑥0

and the variance of the estimator is given by

𝑣𝑎𝑟( ̂𝜇0) = ( 1
𝑛 + (𝑥0 − ̄𝑥)2

𝑆𝑥𝑥
) 𝜎2

Therefore,

̂𝜇0 − 𝜇0
𝑠𝑒[ ̂𝜇0] = ̂𝜇0 − 𝜇0

√( 1
𝑛 + (𝑥0−𝑥̄)2

𝑆𝑥𝑥
) 𝜎2

∼ 𝑡𝑛−2

Individual Response

The actual estimate of an individual response

̂𝑦0 = ̂𝛼 + ̂𝛽𝑥0

However, the uncertainty associated with this estimator, as indicated by its variance, is higher
compared to the mean estimator because it relies on the value of an individual response 𝑦0
rather than the more stable mean. To account for the additional variability of an individual
response relative to the mean, an extra term, 𝜎2, must be included in the variance expression
for the estimator of a mean response.

𝑣𝑎𝑟[ ̂𝑦0] = (1 + 1
𝑛 + (𝑥0 − ̄𝑥)2

𝑆𝑥𝑥
) 𝜎2

Thus,

̂𝑦 − 𝑦0
𝑠𝑒[ ̂𝑦0] = ̂𝑦 − 𝑦0

√(1 + 1
𝑛 + (𝑥0−𝑥̄)2

𝑆𝑥𝑥
) 𝜎2

∼ 𝑡𝑛−2

Let’s put this two idea through our example. If we want to find a 95% confidence interval or
the expected portfolio value on stock price of say, 360. In that case,
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Estimate of the expected portfolio value = 0.266 + 0.836 × 3.6 = 3.276

and

se[Estimate] = √( 1
10 + (3.6 − 3.566)2

8.53 ) 0.1594 = 0.1263

So, the 95% CI

3.276 ± (𝑡0.025,8 × se[Estimate]) = 3.276 ± 2.306 × 0.1263 = (2.985, 3.567)

That is for a stock price of $360, the expected portfolio value would be in the range of
($298.50, $356.70)
Similarly, the 95% CI for the predicted actual portfolio value

3.276 ± (𝑡0.025,8 × se[Estimate]) = 3.276 ± 2.306√(1 + 1
10 + (3.6 − 3.566)2

8.53 ) 0.1594

= (2.3103, 4.2417)

or ($231.03, $424.17)

Model Accuracy

The residual from the fit at 𝑥𝑖 is the estimated error which is defined by

̂𝜖𝑖 = 𝑦𝑖 − ̂𝑦𝑖

Scatter plots of residuals versus the explanatory variable (or the fitted response values) are
particularly insightful. A lack of random scatter in the residuals, such as the presence of a
discernible pattern, indicates potential shortcomings in the model.

df = pd.DataFrame({
'Stock': ['Apple', 'Citi', 'MS', 'WF', 'GS', 'Google', 'Amazon', 'Tesla', 'Toyota', 'SPY'],
'StockPrice': [2.11, 2.42, 2.52, 3.21, 3.62, 3.86, 4.13, 4.27, 4.51, 5.01],
'Portfolio': [2.12, 2.16, 2.51, 2.65, 3.62, 3.15, 4.32, 3.31, 4.18, 4.45]

})
x = df.StockPrice.values
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y = df.Portfolio.values

y_hat = [0.266+0.836*i for i in x]
plt.scatter(x, y-y_hat)
plt.axhline(0)
plt.ylabel('Residuals')
plt.xlabel('Stock Price')
plt.title('Scatter plot of the residuals from the fitted line')
plt.show()
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Scatter plot of the residuals from the fitted line

In this plot, we can see that the residuals tend to increase as 𝑥 increases, indicates that
the error variance is not bounded, but increasing with 𝑥. So, the model is not the best
one. A transformation of the responses may stabilize the error variance. In certain case, for
some growth models, the appropriate model is that the expected response is related to the
exploratory variable through an exponential relationship, i.e.,

𝔼[𝑌𝑖|𝑋 = 𝑥𝑖] = 𝛼𝑒𝛽𝑥𝑖

⟹ 𝑧𝑖 = log 𝑦𝑖 = 𝜂 + 𝛽𝑥𝑖 + 𝜖𝑖; where 𝜂 = log 𝛼
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x = df.StockPrice.values
y = np.log(df.Portfolio.values)

n = len(x)

x_sum, y_sum =0,0
s_xx, s_yy, s_xy = 0,0,0
for i in range(n):

x_sum += x[i]
s_xx += x[i]**2
y_sum += y[i]
s_yy += y[i]**2
s_xy += x[i]*y[i]

s_xx = s_xx - (x_sum)**2/n
s_yy = s_yy - (y_sum)**2/n
s_xy = s_xy - (x_sum * y_sum)/n

r = s_xy/math.sqrt(s_xx * s_yy)

# Print with formatted labels
print(f"Sum x: {x_sum:.2f}")
print(f"Sum y: {y_sum:.2f}")
print(f"S��: {s_xx:.2f}")
print(f"S��: {s_yy:.2f}")
print(f"S��: {s_xy:.2f}")
print(' ')
print(f"r : {r:.2f}")

Sum x: 35.66
Sum y: 11.43
S��: 8.53
S��: 0.70
S��: 2.29

r : 0.94

Now we have:
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𝑛 = 10, ∑ 𝑥 = 35.66, ∑ 𝑦 = 11.43
𝑆𝑥𝑥 = 8.53 𝑆𝑦𝑦 = 0.70, 𝑆𝑥𝑦 = 2.29

⟹ ̂𝛽 = 𝑆𝑥𝑦
𝑆𝑥𝑥

= 2.29
8.53 = 0.268

̂𝛼 = ∑ 𝑦
𝑛 − ̂𝛽 ∑ 𝑥

𝑛 = ̄𝑦 − ̂𝛽 ̄𝑥
= 1.143 − 0.268 × 3.566 = 0.1873

import numpy as np
z_hat = [np.log(0.1873)+0.268*i for i in x]
z = np.log(y)
plt.scatter(x, z-z_hat)
plt.axhline(np.mean(z-z_hat))
plt.ylabel('Residuals')
plt.xlabel('Stock Price')
plt.title('Scatter plot of the residuals from the fitted line')
plt.show()
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Scatter plot of the residuals from the fitted line

Now the residuals look good, that is no special pattern or increasing the error variance.

Thanks for reading.
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