
Pricing Derivatives Using Black-Scholes-Merton
Model

Rafiq Islam

2023-11-12

Table of contents

Introduction . 1
Background and Preliminaries . 1

Black-Scholes-Merton Formula . 4
Step 1: Substitutions . 6
Step 2: Derivative Transformations . 6
Step 3: Transforming the PDE . 7
Step 4: Solving the Heat Equation . 8

Asymptotic Behavior of the BSM formula for call and put options 8
Greeks: Delta and Gamma . 9
Implementation . 9

Notation . 9
Example Usage . 12

References . 13

Introduction

In this blog, we will explore how to price simple equity derivatives using the Black-Scholes-
Merton (BSM) model. We will derive the mathematical formula and then provide Python code
to implement it.

Background and Preliminaries

Before proceeding to the deep of the discussion, we need to know some definition and terminol-
ogy

1

Brownian Motion: Brownian motion is a concept with definitions and applications across
various disciplines, named after the botanist Robert Brown, is the random, erratic movement
of particles suspended in a fluid (liquid or gas) due to their collisions with the fast-moving
molecules of the fluid.

Brownian motion is a stochastic process (Bt)t≥0 defined as a continuous-time process with the
following properties:

• B0 = 0 almost surely.
• Bt has independent increments.
• For t > s, Bt − Bs ∼ N(0, t − s) (normally distributed with mean 0 and variance t − s).
• Bt has continuous paths almost surely.

from mywebstyle import plot_style
plot_style('#f4f4f4')
import numpy as np
import matplotlib.pyplot as plt

Parameters
n_steps = 100 # Number of steps
n_paths = 20 # Number of paths
time_horizon = 1 # Total time
dt = time_horizon / n_steps # Time step
t = np.linspace(0, time_horizon, n_steps) # Time array

Generate Brownian motion
def generate_brownian_paths(n_paths, n_steps, dt):

Standard normal increments scaled by sqrt(dt)
increments = np.random.normal(0, np.sqrt(dt), (n_paths, n_steps))
Cumulative sum to generate paths
return np.cumsum(increments, axis=1)

Generate one path and multiple paths
single_path = generate_brownian_paths(1, n_steps, dt)[0]
multiple_paths = generate_brownian_paths(n_paths, n_steps, dt)

Plotting
fig, axes = plt.subplots(1, 2, figsize=(7.9, 3.9))

Single path
axes[0].plot(t, single_path, label="Single Path")
axes[0].set_title("Brownian Motion: Single Path")
axes[0].set_xlabel("Time")

2

axes[0].set_ylabel("Position")
axes[0].legend()

Multiple paths
for path in multiple_paths:

axes[1].plot(t, path, alpha=0.5, linewidth=0.8)
axes[1].set_title(f"Brownian Motion: {n_paths} Paths")
axes[1].set_xlabel("Time")
axes[1].set_ylabel("Position")

plt.tight_layout()
plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Po
sit

io
n

Brownian Motion: Single Path
Single Path

0.0 0.2 0.4 0.6 0.8 1.0
Time

2

1

0

1

2

Po
sit

io
n

Brownian Motion: 20 Paths

Geometric Brownian Motion (GBM)
A stochastic process St is said to follow a geometric Brownian motion if it satisfies the following
equation:

dSt = µStdt + σStdBt

Which can be written as

St − S0 =
∫ t

0
µSudu +

∫ t

0
σSudBu

To solve the GBM, we apply Ito’s formula to the function Zt = f(t, St) = ln(St) and then by
Taylor’s expansion, we have

3

df = ∂f

∂t
dt + ∂f

∂s
dSt + 1

2
∂2f

∂s2 (dSt)2 + 1
2

∂2f

∂s2 (dt)2 + ∂2f

∂t∂s
dtdSt

By definition we have

dSt = µStdt + σStdBt

(dSt)2 = µ2(dt)2 + 2µσdtdBt + σ2(dBt)2

The term (dt)2 is negligible compared to the term dt and it is also assume that the product
dtdBt is negligible. Furthermore, the quadratic variation of Bt i.e., (dBt)2 = dt. With these
values, we obtain

dZt = 1
St

dSt + 1
2

{
− 1

S2
t

}
[dSt]2

= 1
St

(µStdt + σStdBt) + 1
2

{
− 1

S2
t

}
σ2S2

t dt

=⇒ dZt = (µdt + σdBt) − 1
2σ2dt

=
(

µ − 1
2σ2

)
dt + σdBt

with Z0 = ln S0. Now we have the following

∫ t

0
dZs =

∫ t

0

(
µ − 1

2σ2
)

ds +
∫ t

0
σdBs

=⇒ Zt − Z0 =
(

µ − 1
2σ2

)
t + σBt

=⇒ ln St − ln S0 =
(

µ − 1
2σ2

)
t + σBt

=⇒ ln
(

St

S0

)
=
(

µ − 1
2σ2

)
t + σBt

=⇒ St = S0 exp
{(

µ − 1
2σ2

)
t + σBt

}

Black-Scholes-Merton Formula

Now we are ready to derive the BSM PDE. The payoff of an option V (S, T) at maturity is is
known. To find the value at an earlier stage, we need to know how V behaves as a function of

4

S and t. By Ito’s lemma we have

dV =
(

µS
∂V

∂S
+ ∂V

∂t
+ 1

2σ2S2 ∂2V

∂S2

)
dt + σS

∂V

∂S
dB.

Now let’s consider a portfolio consisting of a short one option and long ∂V
∂S shares at time t.

The value of this portfolio is

Π = −V + ∂V

∂S
S

over the time [t, t + ∆t], the total profit or loss from the changes in the values of the portfolio
is

∆Π = −∆V + ∂V

∂S
∆S

Now by the discretization we have,

∆S = µS∆t + σS∆B

∆V =
(

µS
∂V

∂S
+ ∂V

∂t
+ 1

2σ2S2 ∂2V

∂S2

)
∆t + σS

∂V

∂S
∆B

=⇒ ∆Π =
(

−∂V

∂t
− 1

2σ2S2 ∂2V

∂S2

)
∆t

At this point, if r is the risk-free interest rate then we will have following relationship

rΠ∆t = ∆Π

The rationale of this relation is that no-aribtrage assumption. Thus, we have

(
−∂V

∂t
− 1

2σ2S2 ∂2V

∂S2

)
∆t = r

(
−V + ∂V

∂S
S

)
∆t

=⇒ ∂V

∂t
+ 1

2σ2S2 ∂2V

∂S2 + rS
∂V

∂S
− rV = 0

This is the famous Black-Scholes-Merton PDF, formally written with the boundary conditions
as follows

5

∂c

∂t
+ 1

2σ2c2 ∂2c

∂S2 + rc
∂c

∂S
− rc = 0

c(0, t) = 0
c(S+∞, t) = S − Ke−r(T −t)

c(S, T) = max{S − K, 0}

This Black-Scholes-Merton PDE can be reduced to the heat equation using the substitutions
S = Kex, t = T − τ

1
2 σ2 , and c(S, t) = Kv(x, τ). Let’s derive the solution step by step in full

mathematical detail and show how this leads to the normal CDF.

Step 1: Substitutions

We aim to reduce the BSM PDE:
∂c

∂t
+ 1

2σ2S2 ∂2c

∂S2 + rS
∂c

∂S
− rc = 0

to the heat equation. Using the substitutions:

• S = Kex, where x = ln(S/K), and S ∈ (0, ∞) maps x ∈ (−∞, ∞),
• t = T − τ

1
2 σ2 , so τ = 1

2σ2(T − t),
• c(S, t) = Kv(x, τ), where v(x, τ) is the transformed function.

Step 2: Derivative Transformations

For c(S, t) = Kv(x, τ), we compute derivatives.

1. The first derivative of c with respect to S:
∂c

∂S
= ∂

∂S

(
Kv(x, τ)

)
= K

∂v

∂x

∂x

∂S
,

where x = ln(S/K) implies ∂x
∂S = 1

S . Thus:

∂c

∂S
= K

∂v

∂x

1
S

.

2. The second derivative of c with respect to S:

∂2c

∂S2 = ∂

∂S

(
K

∂v

∂x

1
S

)
.

Using the product rule:
∂2c

∂S2 = K
∂2v

∂x2
1

S2 − K
∂v

∂x

1
S2 .

6

3. The time derivative:
∂c

∂t
= K

∂v

∂τ

∂τ

∂t
, and ∂τ

∂t
= − 1

1
2σ2 .

Step 3: Transforming the PDE

Substituting the above derivatives into the BSM PDE, we rewrite each term.

1. For ∂c
∂t :

∂c

∂t
= − 1

1
2σ2 K

∂v

∂τ
.

2. For ∂c
∂S :

S
∂c

∂S
= S ·

(
K

∂v

∂x

1
S

)
= K

∂v

∂x
.

3. For ∂2c
∂S2 :

1
2σ2S2 ∂2c

∂S2 = 1
2σ2S2

(
K

∂2v

∂x2
1

S2 − K
∂v

∂x

1
S2

)
= 1

2σ2K
∂2v

∂x2 .

Substituting all these into the BSM PDE:

− 1
1
2σ2 K

∂v

∂τ
+ 1

2σ2K
∂2v

∂x2 + rK
∂v

∂x
− rKv = 0.

Divide through by K:

−∂v

∂τ
+ ∂2v

∂x2 + 2r

σ2
∂v

∂x
− 2r

σ2 v = 0.

To simplify, let v(x, τ) = eαx+βτ u(x, τ), where α and β are constants. Substituting and choosing
α = − r

σ2 and β = − r2

2σ2 , the equation reduces to:

∂u

∂τ
= ∂2u

∂x2 .

7

Step 4: Solving the Heat Equation

The heat equation ∂u
∂τ = ∂2u

∂x2 has a well-known solution using Fourier methods:

u(x, τ) = 1√
2πτ

∫ ∞

−∞
e− (x−y)2

2τ f(y) dy,

where f(y) is the initial condition.

For the BSM problem, the initial condition is the payoff:
f(y) = max(ey − 1, 0).

Performing the integration leads to the final solution involving the cumulative normal distribu-
tion function:

v(x, τ) = N(d1) − e−xN(d2),

where:
d1 =

x + 1
2τ

√
τ

, d2 =
x − 1

2τ
√

τ
.

Transforming back to the original variables gives the Black-Scholes formula:
C(S, t) = Se−q(T −t)N(d1) − Ke−r(T −t)N(d2),

where:

d1 =
ln(S/K) + (r − q + σ2

2)(T − t)
σ

√
T − t

, d2 = d1 − σ
√

T − t.

Similarly, we can derive the price of a European put option:

P = Ke−rT N(−d2) − Se−qT N(−d1)

Where:

d1 =
ln(S

K) + (r − q + σ2

2)T
σ

√
T

, d2 = d1 − σ
√

T

Asymptotic Behavior of the BSM formula for call and put options

What if K → 0? In that case,

1. ln(S0/K) → ∞, causing d1 → ∞ and d2 → ∞

2. The cdf N(d1) → 1 and N(d2) → 1

3. The second term Ke−rT N(d2) → 0 as K → 0

In this case, the price of a call option C → S0 and the price of a put option P → 0

8

Greeks: Delta and Gamma

Delta (∆) is the sensitivity of the option price to changes in the underlying asset price:

∆ = ∂C

∂S
≈ C(S0 + h) − C(S0 − h)

2h

This is the central difference approximation, which provides a more accurate estimate of
delta compared to the forward or backward difference methods.

• C(S0 + h): Calculate the option price with the spot price increased by h.
• C(S0 − h): Calculate the option price with the spot price decreased by h.

Gamma (Γ) measures the rate of change of delta with respect to the underlying asset price:

Γ = ∂2C

∂S2 ≈ ∆(S0 + h) − ∆(S0 − h)
2h

≈ C(S0 + h) − 2C(S0) + C(S0 − h)
h2

Gamma (Γ) measures the rate of change of delta (∆) with respect to the underlying spot price
(S0).

• C(S0 + h): Option price with the spot price increased by h.
• C(S0): Option price at the current spot price.
• C(S0 − h): Option price with the spot price decreased by h.

Relationship Between Delta and Gamma:

• Gamma represents how much delta changes for a small change in S0.
• If gamma is high, delta is more sensitive to changes in S0, which is important for hedging

strategies.

Implementation

Notation

• S: Spot price of the stock.
• K: Strike price of the option.
• T : Time to maturity (in years).
• r: Risk-free rate (continuously compounded).
• q: Dividend yield (continuously compounded).
• σ: Volatility of the stock.
• N(·): Cumulative distribution function of the standard normal distribution.

9

from dataclasses import dataclass
import numpy as np
from scipy.stats import norm

@dataclass
class Equity:

spot: float
dividend_yield: float
volatility: float

@dataclass
class EquityOption:

strike: float
time_to_maturity: float
put_call: str

@dataclass
class EquityForward:

strike: float
time_to_maturity: float

def bsm(underlying: Equity, option: EquityOption, rate: float) -> float:
S = underlying.spot
K = option.strike
T = option.time_to_maturity
r = rate
q = underlying.dividend_yield
sigma = underlying.volatility

Handle edge case where strike is effectively zero
if K < 1e-8:

if option.put_call.lower() == "call":
return S

else:
return 0.0

d1 = (np.log(S / K) + (r - q + 0.5 * sigma**2) * T) / (sigma * np.sqrt(T))
d2 = d1 - sigma * np.sqrt(T)

if option.put_call.lower() == "call":
price = S * np.exp(-q * T) * norm.cdf(d1) \

- K * np.exp(-r * T) * norm.cdf(d2)

10

elif option.put_call.lower() == "put":
price = K * np.exp(-r * T) * norm.cdf(-d2) \

- S * np.exp(-q * T) * norm.cdf(-d1)
else:

raise ValueError("Invalid option type. Must be 'call' or 'put'.")

return price

def delta(underlying: Equity, option: EquityOption, rate: float) -> float:
bump = 0.01 * underlying.spot
bumped_up = Equity(spot=underlying.spot + bump,

dividend_yield=underlying.dividend_yield,
volatility=underlying.volatility)

bumped_down = Equity(spot=underlying.spot - bump,
dividend_yield=underlying.dividend_yield,
volatility=underlying.volatility)

price_up = bsm(bumped_up, option, rate)
price_down = bsm(bumped_down, option, rate)
return (price_up - price_down) / (2 * bump)

def gamma(underlying: Equity, option: EquityOption, rate: float) -> float:
bump = 0.01 * underlying.spot
bumped_up = Equity(spot=underlying.spot + bump,

dividend_yield=underlying.dividend_yield,
volatility=underlying.volatility)

bumped_down = Equity(spot=underlying.spot - bump,
dividend_yield=underlying.dividend_yield,
volatility=underlying.volatility)

original_price = bsm(underlying, option, rate)
price_up = bsm(bumped_up, option, rate)
price_down = bsm(bumped_down, option, rate)
return (price_up - 2 * original_price + price_down) / (bump**2)

def fwd(underlying: Equity, forward: EquityForward, rate: float) -> float:
S = underlying.spot
K = forward.strike
T = forward.time_to_maturity
r = rate
q = underlying.dividend_yield
forward_price = S * np.exp((r - q) * T) - K

return forward_price

11

def check_put_call_parity(
underlying: Equity,
call_option: EquityOption,
put_option: EquityOption,
rate: float
) -> bool:

call_price = bsm(underlying, call_option, rate)
put_price = bsm(underlying, put_option, rate)
S = underlying.spot
K = call_option.strike
T = call_option.time_to_maturity
r = rate
q = underlying.dividend_yield

parity_lhs = call_price - put_price
parity_rhs = S * np.exp(-q * T) - K * np.exp(-r * T)

return np.isclose(parity_lhs, parity_rhs, atol=1e-4)

Example Usage

Say, we want to price a call option on an equity with spot price S0 = 450 with dividend yield
q = 1.4%, and volatility 14%. The strike price of the call is K = 470, with time to maturity in
years T = 0.23 and the risk free rate r = 0.05. Next, we want to see the asymptotic behavior
of the call option if the strike price K → 0 with interest rate 0. Next, we want to price a put
option on the same equity but strike price K = 500, time to maturity in years T = 0.26 and
interest rate is 0. Finally, we want to check if the put-call parity relationship is hold. In each
case, we consider h = 0.01 a bump or small change in the stock price.

if __name__ == "__main__":
eq = Equity(450, 0.014, 0.14)
option_call = EquityOption(470, 0.23, "call")
option_put = EquityOption(500, 0.26, "put")

print(bsm(eq, option_call, 0.05))
print(bsm(eq, EquityOption(1e-15, 0.26, "call"), 0.0))
print(bsm(Equity(450, 0.0, 1e-9), option_put, 0.0))

Check put-call parity
eq = Equity(450, 0.015, 0.15)

12

option_call = EquityOption(470, 0.26, "call")
option_put = EquityOption(470, 0.26, "put")
print(check_put_call_parity(eq, option_call, option_put, 0.05))

5.834035584709966
450
50.0
True

References

• Karatzas, I., & Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus.

• Options, Futures, and Other Derivatives by John C. Hull

• Arbitrage Theory in Continuous Time Book by Tomas Björk

Share on

�

ï

�

You may also like

13

	Introduction
	Background and Preliminaries

	Black-Scholes-Merton Formula
	Step 1: Substitutions
	Step 2: Derivative Transformations
	Step 3: Transforming the PDE
	Step 4: Solving the Heat Equation
	Asymptotic Behavior of the BSM formula for call and put options

	Greeks: Delta and Gamma
	Implementation
	Notation
	Example Usage

	References

